Y i‘l ": H

LLUER LR 1 e

KARINA BORTOLUCCE

APLICACAO DE UMA METODOLOGIA NA MANUTENCAO
EVOLUTIVA DE UM SISTEMA DE SOFTWARE

Monografia a ser apresentada a Escola
Politécnica da Universidade de Sio
Paulo para obtencio do titulo de MBA
em Engenharia de Software.

Area de Concentragao:
Engenharia de Software

Orientadora:
Prof*. Maria Alice G. V. Ferreira

Sio Paulo
2003

A minha familia e meus amigos que me apoiaram com

carinho ¢ paciéncia em todos os momentos deste trabalho.

AGRADECIMENTOS

A professora Maria Alice pela orientagio, dedicagdo e incentivo no

desenvolvimento desta Dissertac&o.

Ao colega Marcelo Gomes que contribui com seu conhecimento a acrescentar

na pesquisa.
Aos meus pais Nelson e Sonia, por estarem sempre me apoiando.

As minhas irmés Elaine ¢ Fernanda e aos meus amigos Denis e Fernando por

vossa paciéncia e ajuda.

A todos que colaboraram, direta ou indiretamente, para a execugfio deste

trabalho.

RESUMO

Este trabalho apresenta um estudo de metodologias, processo de manutencio e
engenharia reversa e a situagdo atual da empresa em que trabalha a autora com o
objetivo de fornecer uma metodologia para melhorar o processo de manutengo de
software vigente. A proposta envolve o uso de engenharia reversa para a geracgdo dos
modelos da Analise Essencial para um sistema ja implantado, que é o centro dos
processos de negocio da empresa, que s&o muito importantes para a sua atualizagio,
de acordo com a manutengio. Propde-se também um processo de manutengdo com

fases bem definidas visando & qualidade.

ABSTRACT

This paper presents a study of methodologies, maintenance process and reverse
engineering and the current situation of the company, where the author works with
the purpose to provide a methodology in order to improve the current software
maintenance process. The proposal involves the use of reverse engineering in the
generation of the models of Essential Analysis for an implanted system that is the
core of company business processes, which are very important in its update, in
accordance with the maintenance. A process of maintenance, which has gotten quite

definite phases, is also proposed aiming at quality.

SUMARIO

Lista de FIGUIASoooiiiii ettt i
Lista de Tabelas ..ot i
Lista de Abreviaturas € Siglaso.ooooiiiiviii e iii
Capitulo 1 — INrOAUGAO. ... 1
1.1 O COMEEREO. ...t 2

E LT OMM et 3

LL2Z RUP OO et en e ebae s 5

1.1.3 CMM e Metodologias de Desenvolvimento de Sistemas (MDS)............. 6

1.2 MOBIVAGHD ..ooioi et e ettt e s e e e eae e e e s ra e e rnan e et aeeas 7/
1.3 Perspectiva de ContribuiGlo ..ot 8
1.4 MetodoloZiaoooiiiiiiii e 8
1.5 Estrutura de Trabalho ..o e 9
Capitulo 2 — Metodologias Pesquisadas...........c.ooooeviiiinic e TSR 11
2.1 Manuteng8o de SORWATe ..o 11
2.1.1 Tipos de Manuteng@o de Softwareccooooviiiiiiiinie 13
2.1.2 Custos de Manutencio de Software..............cocoooviiiiiii 14
2.1.3 Processo de Manutenciio de Software ... 15

2. 131 OBJREIVOS oot 15
2.1.3.2 Classificagio das Solicitagdes de Manutengido de Software 16

2.1.3.3 Descrigio do Processo de Manutengio de Software......................... 17

2.1.4 Manutengiio da Especificacfio............cccooviiiiiiici e 21
2.1.4.1 Pré-Requisitos NECeSSATIOScooiiiiiiiiiie et 21
2142 Como faZBT ... 22

2.2 Extreme Programming - XP ... 23
2.2.1 Valores, Principios e Requisitos Basicosde XP ... 24
2.2.2 O Ciclo de Vida e as Fases do Processoccoovvevceivic e 26
2.2.3 Algumas consideragdes sobre o ciclode vida XP ... 28
2.2.4 Estratégias de Gerenclamento.........cccoooeveiriinieeiniee e 28

2.3 Rational Unified Proces —RUPcccecomvvviiiiinicieiieeis e 29

2.4 Engenharia REVEISA.......occoiiiiiiiiiiiceecee e e, 32

2.5 Consideragdes finais sobre os métodos ..o, 32
Capitulo 3 — Investigacio do Processo Vigente na Empresaoccooevevveciinennnn, 35
3.1 Viso geral do processo de manutengio na empresacooooveeveieirennennnn, 35
3.2 As pessoas envolvidas — a equipe de projeto e manutenco...............c.....e.. 36
3.3 Documentos envolvidosooooiiiiii e 37
3.4 Fluxo de Documentos e fluxo de informagdescoooiiioiiicviienne 39
341 Fluxode DOCUMENtOSoooooiiiiiiiiciiiei e, 39
3.4.2 Fluxo de Informaglescoooiooiiieiieiicieie et ee et enna e 40
3.5 Arquitetura do sistema € sua eVORICHOccoovvivicieicc e 41
3571 Gestio De Dados ..o 41
352 IMErfACE ..o e e e 42
3.5.3 ProtOtiPAGHD.eoiiiertiiie it 42
3.5.4 Controle de VEersdes...........c..oooi oo 43
3.6 Ferramenta Utilizadacoiiviiiii e 43
3.7 Avaliagio sobre o processo atual de manutencdo..................................... 43
Capitulo 4 — Proposta para Melhoria do Processo.........ocooeeiieiiiiiieiicecie e, 44
4.1 Processo para a Engenharia Reversa..............ccccoooeviiinicviciccc e, 44
4.1.1 Identificar 08 EVENtOSc..ocooiiiiiiiiecciecce e 45
4.1.2 Determinar o Diagrama de Contexto do Sistema................cccooeviein.n 46
4.1.3 Identificar as Entidades, seus Atributos e Relacionamentos.................... 47
4.1.4 Diagrama de Fluxode Dados—DFD ... 48
4.2 Programa de Garantia de Qualidade de Software.................ooccooiiini 49
4.2.1 Cnagdo de um Grupo de Qualidade de Software.......................oco 49
4.2.2 Qualidade na Modelagem e nos Resultados dos Produtos....................... 50
4.3 Processo de Manutencao. ... 50
4.3.1 Fasede Identificag@o ..., 50
4.3.2 Fasede Analise e Projeto..............ccoooiioiiiiicie e 51
4.3.3 Fasede Implementago................occoooiiiiiiiii e 53

434 Fase de TeSteS. ..oooo oo 53

43.5 Fase de Implantacloc.coooiiiiiiiie e

Capitulo 5 — Conclusdes

5.1 Consideragdes FINAISc..cooeviiiiiiiecceiece et

5.2 Conclusdo Final..

LISTA DE FIGURAS
Figura 2.1 — Equipe envolvida no processo de manuten¢80oc..coooeennn 17
Figura2.2 ~-Ciclode vidado XPcccoooiiiiiiiiiiceiiceiiee e, 26
Figura 2.3 — Fases, iteragGes e fluxo de trabalho do RUP ... 30
Figura 3.1 — Visdo Geral do Processo de Manutengio Ian Sommerville (2003) ... 36
Figura 3.2 — Representagfio do Fluxo de Documentosccc.oooevevcevreurerienene, 39
Figura 3.3 — Representacio do Fluxo de Informag80c.ooooiii i, 40
Figura 4.1 — Diagrama de Contexioooveviereireieiiieeeeeee e e 47

Figura 4.2 — Diagrama de Fluxo de Dados ... 49

Tabela 2.1 — Leis de Lehman

LISTA DE TABELAS

Tabela 4.1 —Lista de BVentosooooi e ee e e e

il

LISTA DE ABREVIATURAS E SIGLAS

CMM - Capability Maturity Model

DED - Diagrama de Estrutura de Dados

DFD - Diagrama de Fluxo de Dados

DOC - Documento de Ordem de Crédito

IEEE - Institute of Electrical and Electronics Engineers
ISO - International Organization for Standardization
KPAs — Key Process Areas

MDS - Metodologias de Desenvolvimento de Sistemas
00 - Orientagdo a Objetos

RUP - Rational Unified Process

SEI — Software Engineering Institute

SEPG - Software Engineering Process Group

Std — Standard

UML - Unified Modeling Language

XP - Extremme Programming

i

Capitulo 1 — INTRODUCAO

As vésperas da virada do século, com o cenario de transformagbes constantes do
mercado mundial, a temdtica proritaria no campo empresarial passou a ser a
competitividade. A necessidade de se impor em um mercado globalizado, sem
fronteiras, faz com que empresas vivam um processo continuo de transformagio.
Diante desse contexto, os grandes desafios estfio na busca da garantia da qualidade e

produtividade. No dmbito da tecnologia da informacgio essa realidade n#o é diferente.

A qualidade de software € um dos assuntos mais atuais em discusséo na comunidade
de Engenharia de Software. Embora os primeiros esfor¢os no sentido de se produzir
software com maior qualdade e produtividade datem da década de 70, foi na
segunda metade da década de 90 que uma série de novos conceitos e abordagens
alcangaram maturidade e visibilidade. Com os objetivos relacionados, para a
elevagio do nivel de qualidade do software é recomendavel utilizar como
referéncias, modelos reconhecidos internacionalmente, como as normas ISO e o

modelo CMM., Dentre estes, o SEI-CMM ¢ o mais conhecido e utilizado.

A conformidade com esses modelos, no entanto, exige um grande esforgo na
definiciio de procedimentos e padrBes, e envolve a implantagio de uma metodologia
de desenvolvimento que descreva as atividades, produtos e responsaveis pelas
diversas etapas do ciclo de vida do software. Neste sentido, metodologias orientadas
a objetos, que estimulem um desenvolvimento iterativo e incremental, com foco em

analise de riscos, t€m se mostrado convenientes e Uteis.

O Rational Unified Process — RUP — apresenta caracteristicas adequadas aos
sistemas de qualidade devido a sua ampla abrangéncia, com a definigio de atividades
que contemplam desde o planejamento do projeto, até os processos de teste e
geréncia da configuragdo do software. Mas, apesar do RUP estar sendo adotado
como metodologia padrio por varias organiza¢des em todo o mundo, percebe-se um
relevante grau de incerteza no que diz respeito a seu nivel de conformidade com

modelos internacionais de qualidade.

Assim sendo, um dos maiores desafios das organizagBes de software hoje é,
justamente, aplicar em seus processos de desenvolvimento tanto os novos conceitos
de engenhana de software quanto as praticas de qualidade preconizadas pelo CMM ¢

outros modelos.

1.1 O contexto

Nos ultimos anos, as organizagdes de desenvolvimento de software tém aumentado
sua percep¢do em relagiio aos problemas que tipicamente as tocam. Software com
bugs, prazos e orcamentos nio cumpridos e insatisfagiio de clientes e usuarios sdo

eventos muito mais freqgiientes do que se desejaria.

Ja desde a década de 70 existe um consenso na comunidade de Engenharia de
Software de que estes problemas estdo, em grande parte, relacionados ao fato de que
o desenvolvimento de software € muitas vezes realizado de forma "artesanal”, isto é,
através de métodos improvisados pelos desenvolvedores, os quais, por sua vez,
muitas vezes dependem muito mais de seu talento individual — nem sempre
abundante - do que de uma solida formagdo, acompanhada de métodos formais que
dirjam suas atividades. Isto levou ao desenvolvimento e introdugdo das chamadas
Metodologias de Desenvolvimento de Sistemas (MDS), através das quais se
procurava padronizar boas praticas de Engenharia de Sofiware, normalmente
vinculadas a técnicas especificas, tais como a Andlise Estruturada de Sistemas ou a

Modelagem de Dados.

O sucesso na implantagio e uso das MDS foi relativo. Nas (poucas) organizagdes
onde existiam as condigdes para seu sucesso, resultados significativos foram
alcan¢ados. Em muitos lugares, no entanto, tais resultados ndo foram os esperados.
Dentre os motivos que levaram ao relativo insucesso das MDS, um dos mais
importantes € o foco excessivo que estas colocam nas atividades de Engenharia, em
detrimento das atividades de Gerenciamento. Boas técnicas de desenvolvimento ndo

adiantam se o projeto como um todo € mal conduzido.

1.1.1 CMM

Combinando esta percepgdo com os conceitos mais genéricos do Gerenciamento da
Qualidade Total, a comunidade comegou a priorizar o foco das iniciativas de
methoria na definicdo de melhores processos de gerenciamento de projetos de
software. A consolidagdo destas idéias se deu através do modelo SEI-CMM, da

Carnegie-Mellon University.

O CMM procura orientar a organizagio no sentido de implementar a melhoria
continua do processo de software, ¢ o faz através de um modelo de cinco niveis,
priorizando de forma logica as agOes a serem realizadas. Quanto maior o nivel, maior
a maturidade da organizagio, o que se traduz em maior qualidade do produto final,

prazos e custos mais baixos e maior previsibilidade em cronogramas ¢ orgamentos.

No nivel 1, chamado de Inicial, o desenvoivimento é cadtico. Nfo existem
procedimentos padronizados, estimativas de custos e planos de projeto. Cada qual
desenvolve como quer, ndo existe documentagio e nfio ha mecanismos de controle
que permitam ao gerente saber o que esta acontecendo, identificar problemas e riscos
e agir de acordo com as exigéncias de cada situagdo. Como conseqiiéncia, os desvios
ndo sdo corrigidos e ocorrem os problemas como prazos nio cumpridos, orgamentos
estourados, sofiware sem qualidade e usuirios insatisfeitos. Na verdade, raramente
existe um cronograma ou um orgamento. Infelizmente, estima-se que mais de trés
quartos das empresas norte-americanas encontram-se neste nivel, e nfio hd razdes

para acreditar que a situagdo seja melhor no Brasil.

Para passar ao nivel 2, a organizagdo deve instituir controles bésicos de projeto,
incluindo o Gerenciamento de Requisitos e de Projetos — técnicas para planejar e
estimar o esforgo em projetos, e controlar o progresso —, Controle Gerencial —
verificagdo pela Geréncia do progresso do projeto em momentos pré-determinados,
incluindo a qualidade dos produtos -, a instituigio de um Grupo de Garantia de
Qualidade e de procedimentos basicos de Gerenciamento de Configuragio — para
garantir que mudancas no projeto e manutengdes solicitadas ndo destruam o que ja

foi feito, garantindo um minimo de estabilidade no desenvolvimento; nada é mais

deletério para um projeto do que requisitos que mudam constantemente € sem

controle.

Chegando ao nivel 2, chamado Repetivel, a organizacio estd em condigdes de ter
maior controle sobre seus projetos, € pode-se esperar que as estimativas sejam mais
precisas, j& que se desenvolve uma base histérica intuitiva, e a qualidade do software
produzido seja maior. No entanto, caso a empresa enfrente o desafio de atacar
projetos de caracteristicas distintas daquelas a que esta acostumada, usando uma
nova tecnologia, por exemplo, esta informago sera irrelevante, e a empresa podera

regredir ao nivel 1.

Para passar ao nivel 3, Definido, € necessario introduzir uma Metodologia de
Desenvolvimento formal padronizada, com um ciclo de vida definido, acompanhada
de métodos, técnicas e ferramentas apropriadas, como inspegfes e técnicas
abrangentes de teste. E 0 momento também de estabelecer o SEPG, isto &, o time
encarregado exclusivamente da melhoria continua do processo de software. Ao
chegar a este nivel, a empresa tera um fundamento claro para desenvolver sistemas e

também para melhorar o proprio processo, especialmente quando surgirem crises.

No nivel 3, entretanto, os controles ainda sdo basicamente qualitativos, ndo havendo
meios de quantificar a qualidade dos produtos e a eficiéncia do processo. Assim, a
empresa deve estabelecer métricas de forma a medir caracteristicas especificas dos
produtos. A forma de coletar, armazenar e analisar estes dados ¢ definida e, com base
nesta informagdo, pode-se sugerir methorias especificas nos produtos. Neste ponto, a

empresa estara no nivel 4, ou Gerenciado.

Para subir do nivel Gerenciado para o dltimo nivel, o de Otimizagfo, deve-se
estabelecer meios para a coleta automatica de métricas e para a utilizagdo da
informacdo coletada de forma a prevenir problemas. A idéia é analisar as causas dos
problemas e ataca-las para evitar que voltem a ocorrer. Enquanto os dados coletados
no nivel 4 podem informar, por exemplo, quantos erros existem em um programa, a
preocupacio no nivel 5 é melhorar o processo para evitar que tais erros acontegam no

préximo projeto.

1.1.2 RUPe OO

Por outro lado, olhando sob o aspecto das técnicas de desenvolvimento, o
desenvolvimento orientado a objetos (00Q) sofrew um forte processo de
amadurecimento. As técnicas QO foram desenvolvidas para superar uma série de
limitacSes das técnicas estruturadas, entio hegemdnicas nas organizagdes de
desenvolvimento. Através de conceitos como reutilizagio de codigo,
encapsulamento, heranga e polimorfismo, o desenvolvimento OO promete maior
qualidade e produtividade no desenvolvimento, dadas condigGes iguais de

gerenciamento de projetos.

Uma das maiores dificuldades encontradas pela Orientagio a Objetos em suas
tentativas de obter mator visibilidade e uso foi a falta de padronizacio, especialmente
no que diz respeito a nomenclatura e notagio. Modelos OO “pululavam”, oriundos
das mais diversas origens, gerando muitas vezes confusio entre os desenvolvedores
que iniciavam seu estudo. Some-se a isso a dificuldade, decorrente da falta de
padriio, em se disponibilizarem ferramentas CASE para modelagem QO e ter-se-a
explicagdo para parte da dificuldade que as técnicas OO tiveram, apesar de seus

enormes meritos, em alcangar maior divulgagdo e adogdo por parte das organizagdes.

Neste sentido, um avango muito significativo foi o surgimento da UML — Unified
Modeling Language —, definindo um padrfo em termos de notagdo, e facilitando,
portanto, o estudo e a adogio da OO pelas organizacBes, na medida em que esta
padronizacio permitin a criacdo de ferramentas adequadas e a simplificacio do

treinamento dos desenvolvedores.

No entanto, a UML restringia-se a definir um padrfio de notagfio, sem prescrever um
processo de desenvolvimento de software. Em outras palavras, a organizagdo que
quisesse desenvolver software segundo o paradigma QO ja dispunha de uma notagio
padronizada e universalmente aceita, mas tinha a necessidade de adicionar 3 UML
um processo OO de desenvolvimento por conta propria. O RUP — Rational Unified
Process — foi desenvolvido para suprir esta lacuna, sugerindo as organizagdes um
processo de desenvolvimento OO coerente com a UML e, através de customizagio,

aplicavel a uma grande diversidade de projetos de desenvolvimento.

A estrutura do RUP permite, inclusive, que ele seja customizado para a definigio de
processos de desenvolvimento baseados em técnicas n30-00, como a Andlise
Essencial. Isto € muito 0til, na medida em que organizagdes com grande mimero de
sistemas legados, desenvolvidos com uso de técnicas estruturadas, possam adotar o
RUP tanto para a manuten¢do de sistemas estruturados legados — € posterior
migragdo para QO — quanto para o desenvolvimento de novos sistemas totalmente
dentro dos conceitos OQO. Isto permite economia de expressdo e significativas

economias em treinamento.

1.1.3 CMM e Metodologias de Desenvolvimento de Sistemas (MDS)

Outro aspecto interessante do RUP é que ele inclui, em sua estrutura, processos
gerenciais, conforme exigido pelo CMM no Nivel 2, reconhecendo explicitamente a

necessidade de tais processos para garantir o desenvolvimento ordenado de software.

Embora o CMM priorize a melhoria do processo de software, colocando o foco em
primeiro lugar nas préticas de gerenciamento de projetos (Nivel 2), isto ndo significa
que as técnicas de Engenharia de Software devem ser desprezadas em um primeiro
momento. De fato, o nivel 3 do CMM ¢ o contexto por exceléncia da melhoria das
praticas de engenharia, quando entdo a organizagdo deve selecionar as melhores
praticas de engenharia de seus diversos projetos e definir um Processo Padrido de
Desenvolvimento (MDS), a ser utilizado, de forma customizada, em cada projeto.
Este fato, porém, nio deve levar a ilusdo de que nido é necessario usar uma MDS no
nivel 2. Neste nivel, o CMM apenas n3o exige que a MDS seja padronizada, sendo

que cada projeto pode selecionar a sua MDS.

Na pratica, a experiéncia mostra que é Giil a defini¢io de uma MDS ainda durante o
processo de implantagio do Nivel 2 do CMM na organizacdo, particularmente em
situagbes onde exista grande volume de manutengio ¢ forte integragdo entre
sistemas. A possibilidade, prevista no Nivel 2, de cada projeto definir sua propria
MDS ¢ inviavel, quando a maioria dos projetos é de manutengdo, de curto prazo e
abrangendo software que, embora desenvolvidos em diferentes projetos, apresentam

forte integracgfio.

Assim sendo, é recomendavel que as organizagfes que estejam implantando, ou que
estejam considerando implantar, o Nivel 2 do CMM também incluam no projeto de
melhoria a elaboragdo de uma MDS padronizada a ser usada por todos os projetos.
Neste sentido, aquelas organizagbes que tenham também por objetivo a implantagéo
de novas técnicas de desenvolvimento podem se beneficiar da sinergia existente entre
oCMMeo RUP.

E importante ressaltar que o RUP tem como pré-requisito que a organizagio que o
implanta j4 possua um minimo de organizagio em seu processo de desenvolvimento.
Em outras palavras, dificilmente uma organizacdo se beneficiard das vantagens
trazidas pelo RUP, se nfio colocar em pratica, a0 mesmo tempo, processos

disciplinados como os preconizados pelo CMM ou equivalentes,

1.2 Motivacio

A partir do momento em que um software é colocado em uso, novos requisitos
emergem, € 0s requisitos existentes s@o modificados & medida que a empresa que
utiliza esse software, passa por modificagdes. Partes do software podem precisar de
modificagBes para corrigir os erros encontrados na operagdo, para melhorar seu
desempenho ou por exigéncia de outras caracteristicas ndo funcionais. Tudo isso
indica que, depois de serem entregues, os sistemas de software sempre evoluem, em

resposta as exigéncias de mudangas.

A empresa em que trabalha a autora da monografia, encontra-se na situagio de um
sistema j4 implantado que sofre freqiientes manutengdes evolutivas e corretivas,
onde a taxa destas modificacGes, € regida pelo processo de tomada de decisdes por

parte da organmzagao.

Para esse trabalho de desenvolvimento e manutengdio, nota-se a dificuldade
encontrada pelos profissionais quando se responsabilizam pela manutengio de
produtos que ndo sfio de seu total conhecimento. Por ndo se possuir documentagio do
sistema, o processo de manutengdo torna-se lento e as continuas consultas a colegas
de trabalho que ja estiveram envolvidos anteriormente com este sofiware — Unica

forma de obtencio de conhecimento sobre ele — podem se tornar incémodas a eles,

diminuindo a sua produtividade quanto a seus proprios afazeres e desviando sua
aten¢do de seu trabalho prioritario. A falta do cumprimento das fases de Anlise,
Especificagio, Desenvolvimento, Testes e Implementagio e inexisténcia da
documentaclio necessaria, implica na dificuldade de compreender a integracdo do

sistema como um todo e de se apresentar, de maneira mais formal, ao cliente.

O objetivo desta monografia, € aplicar uma metodologia e um processo adequados a
este problema, prevendo os beneficios advindos de se possuir uma documentagio
formal.

E importante ressaltar que o trabalho citado tem também a finalidade de manter um
alto nivel de qualidade no processo de desenvolvimento de sofiware bem como do

produto final.

1.3 Perspectiva de Contribuicio

Pretende-se com este trabalho:
s Levantar os beneficios da aplicagdo de uma metodologia na manutengio de

um sistema ja em operacfo, mas que vem sofrendo continuas alteragdes;

* [Estabelecer o processo de aplicagio de uma metodologia adequada ao sistema
ja4 implantado, através do estudo da situagio atual, do levantamento das
caracteristicas da ferramenta utilizada na empresa — em torno da qual se di
toda a codificagio efetuada - e do minimo de documentagdo que o sistema

possui;

* Melhorar o trabalho das pessoas envolvidas na manutengfio evolutiva de um

sistema de software, da empresa da autora.

1.4 Metodologia
A metodologia empregada consistiu dos seguintes passos:

¢ Estudo de metodologias da Engenharia de Software, principalmente as mais
recentes — orientadas a objeto — como RUP — Rational Unified Process — e

XP — Extremme Progrmming. Estudo sobre qualidade de software, que

envolveram CMM e I1SO. Este estudo aponta que a qualidade de um produto
de software estd mais relacionada ao processo de desenvolvimento que o

gerou do que com o software propriamente dito;

e Levantamento do processo atualmente adotado pela empresa em questio. A
partir deste levantamento deu-se inicio & proposta da metodologia a ser

adotada, visando & melhona de qualidade de software;

¢ Sob o prisma da qualidade, Pressman (2002, p. 19) ressalta que “o processo
de Engenharia de Software define a estrutura para um conjunto de areas—
chave de processo (KPAs — key process areas), que deve ser estabelecido
para a efetiva utilizagio da tecnologia de engenharia de software. As dreas—
chave de processo formam a base para o controle gerencial de processos de
software e estabelecem o contexto no qual os métodos técnicos sdo aplicados,
os produtos de trabalho (modelos, documentos, dados, relatdrios, formuléarios
etc) sdo produzidos, marcos sdo estabelecidos, qualidade € assegurada e
modificagbes sto adequadamente geridas”. Assim, a pesquisa de um processo
de Engenhana de Software inclui duas outras varidveis a serem estudadas: os
métodos técnicos e as ferramentas que fornecem o apoio automatizado a eles.
No caso do software em questfio, existe uma ferramenta envolvida, a qual é
utilizada na geragfio do produto final a ser encaminhado para operagio. O

estudo desta ferramenta é o passo seguinte neste processo de levantamento,

e Uma proposta para a aplicagio de uma metodologia estruturada para a

empresa da autora sob as metodologias estudadas.

1.5 Estrutura de Trabalho
Esta monografia esta estruturada como se descreve a seguir.

No Capitulo 1 foi feita uma rapida explanago sobre a situagio atual de
desenvolvimento de software, bem como sobre critérios de quakidade que nortetam
este desenvolvimento. Foram apresentados também os objetivos gerais desta

pesquisa e descreveu-se o contexto em que ela se insere.

10

No Capitulo 2 constam metodologias pesquisadas, processo de manutengio e
conceitos de engenharia reversa que fornecem o contetido para a gerago da proposta

deste trabalho.

No capitulo 3 é descnito o processo atual da empresa relatando toda documentacio

utilizada e as pessoas envolvidas no processo de manutengio.

No capitulo 4 apresenta-se a proposta da aplicagio de uma metodologia gerada a
partir do estudo efetuado nos capitulos anteriores, para obter-se um melhor processo

de manutengdo na empresa da autora.

No capitulo 5 sdio apresentadas as consideragdes finais e a conclusdo do trabatho.

1

Capitulo 2 — METODOLOGIAS PESQUISADAS

Neste capitulo analisam-se varias metodologias, quanto ao processo de manutencdo
de software. Primeiramente, ¢ feita uma compilagio do processo de manutengio,
segundo as visGes de varios pesquisadores, tais como expressas em Yourdon (1990),
Sommerville (2003) e Paula Filho (2001). Depois, estudam-se a FExtreme
Programming (XP) e o Rational Unified Process (RUP). Finalmente, comparam-se

estes processos quanto a alguns aspectos, considerados relevantes a este estudo.

2.1 Manutencido de Software

A manutencio de software é o processo geral de modificagio de um sistema depois
que ele foi colocado em uso. As modificages podem ser simples, destinadas a
corrigir erros de codigos, mais extensas, a fim de corrigir os erros de projeto, ou
significativas, com a finalidade de corrigir erros de especificagdo ou acomodar novos
requisitos, segundo lan Sommerville (2003) e ANSI/IEEE (1983).

A partir do momento em que o software foi implantado, novos requisitos emergem, e
0s requisitos existentes sdo modificados a medida que a empresa que utiliza esse
software, passa por modificagdes. Por isso, as mudangas nos produtos de software
sdo de grande importincia, pois estas organizagdes dependem inteiramente de seus

sistemas de software.

A manutengiio é, portanto, uma continuagio do processo de desenvolvimento de

sistema, com atividades associadas de especificagdo, projeto, implementacio e testes.
A manutengio ¢ facilitada pelos seguintes fatores de manutenibilidade:

¢ Disponibilidade de pessoal qualificado;

¢ Desenho adequado e bem documentado;

¢ Uso de linguagens padronizadas;

¢ Uso de ambientes padronizados de desenvolvimento e operagio;

¢ Documentacio padronizada,

12

¢ Disponibilidade de casos e procedimentos de teste;
e Ferramentas e procedimentos padronizados de gestdo de configuragdes;

o Existéncia de um processo de manutencgdo definido.

De acordo com Ian Sommerville (2003), Lehman e Belay (1985) propuseram um
conjunto de leis invaridveis e amplamente aplicdveis — Leis de Lehman — referentes a

mudangas nos sistemas. Essas leis estfio apresentadas na Tabela 2.1.

Tabela 2.1 ~ Leis de Lehman (baseada em Ian Sommerville (2003))

Lei Descricio

Um programa utilizado em um ambiente do mundo real, necessariamente, tem de |

Mudanca continua : . . : - ’
e ser modificado ou se tornard de maneira progressiva menos util nessc ambiente

A medida que um programa em evolugdo se modifica, sua estrutura tende a se

|

Aumento da !
tornar mais complexa. Recursos extras precisam ser dedicados a preservar e|
I

|

I

|

|

I

I

|

complexidade
e 5 simplificar a estrutura.

SV TSN A cvolugio do programa ¢ um processo auto- rcgu]ador Os atributos do sistema.
MICHENTHRG DI como tamanho, tempo entre refeases ¢ nimero de erros relatados, sdo
grande aproximadamente invatidveis para cada release do sistemna.

Durante o tempo de dumcﬁo de um progmma sua taxa de desenvolvimento ¢ |
aproximadamente constante e independente dos recursos dedicados ao |
desenvolvimento do sistema, '

Estabilidade
Organizacional

Conservagao da Durante o tempo de duracio de um sistema, as mudangas incrementais em cada
familiaridade release sdo aproximadamente constantes. |

A primeira lei coloca que a manutenggo do sistema € um processo inevitavel: surgem
novos requisitos de acordo com as moedificagdes que ocorrem no ambiente em que ©
software se insere, as quais devem ser implementadas; o sistema modificado ¢
introduzido novamente no ambiente, promovendo mais mudangas, e dessa forma, o

processo de evolugdo toma-se continuo.

A segunda lei especifica a degradagfo da estrutura do sistema, na medida em que
este € modificado. Para evitar que isso aconteca, é necessario investir na manutengio

preventiva.

13

A terceira lei € sugerida por Lehman e Belady (1985) como resultado de fatores
estruturais e organizacionais fundamentais, porque ela propde que os sistemas de
grande porte t€m uma dindmica propria, estabelecida em um estagio inicial do
processo de desenvolvimento. Isso determina as tendéncias gerais do processo de

manutenc¢io do sistema e limita o nimero de possiveis mudangas no mesmo.

A quarta lei sugere que as mudangas nos recursos ou no pessoal envolvido tém
efeitos imperceptiveis na evolugdo de longo prazo do sistema. Essa lei confirma
também que grandes equipes de desenvolvimento s8o improdutivas quando

atividades indiretas de comunicagdo dominam o trabalho da equipe.

A quinta lei de Lehman diz respeito aos estagios de alteragdes em cada release de
sistema. Quanto mais funcionalidade for introduzida no sistema, maior podera ser o
mimero de reparos a serem incluidos no proximo release. Contudo a lei propde que
ndo se deve orcar grandes aumentos de funcionalidade em cada versfo sem levar em

consideracdo a necessidade de reparo de defeitos.

2.1.1 Tipes de Manutenciio de Software
Existem quatro diferentes tipos de manutengio de software:

1. Manuteng@o corretiva: consiste na remog¢io dos defeitos remanescentes apods o

fim do projeto de desenvolvimento;

2. Manutengiio adaptativa: manutengdo necessaria quando algum aspecto do
ambiente de sistema ¢ modificado exigindo a adaptagio do produto a novos

requisitos;

3. Manutencio evolutiva: melhorias solicitadas pelos usuarios em resposta a
mudangas organizacionais ou de negocios e, em outros casos, se refere a manter a

funcionalidade do sistema, melhorando sua estrutura e seu desempenho.
4. Manuten¢io preventiva: manutengdo que procura localizar os defeitos antes que

estes se manifestem em operacio.

Para Wilson P. de Padua Filho (2001) “a manuten¢fo adaptativa e perfectiva sdo

apenas disfarces para formas indisciplinadas de desenvolvimento... Na maioria das

14

vezes, sdo requisitos listados para novas versdes de um produto, impedindo que

novos defeitos sejam introduzidos numa fragdo significativa de mudancas”.

2.1.2 Custos de Manutenciio de Software

Reparar defeitos em sistemas tal como, adaptad-lo a um novo ambiente ou novos
requisitos, exige uma grande parte do esfor¢o de manutengfo. Por isso, 2 manutengio

¢ representada como uma atividade de processo separada.

Ian Sommerville (2003), ressalta que os custos de manutencio do sistema
representam uma grande propor¢io do orgamento da maioria das organizagSes que
utilizam sistemas de software. Estes custos, variam de um dominio de aplica¢do para
outro. Para os sistemas de aplicagio de negécio, um estudo feito por Guimaries
(1983) mostrou que os custos de manutengio eram amplamente comparaveis com 0s

custos de desenvolvimento de sistemas.

De modo geral, ¢ eficaz investir esforgo no projeto e na implementagdio de um
sistema para que posteriormente o custo de manutengio seja reduzido. Por causa da
necessidade de compreender o sistema existente e analisar o impacto das mudangas
no sistema, torna-se mais dispendioso acrescentar funcionalidades depois da entrega.
Portanto, qualquer trabaltho que favoreca na redugio de custos dessa anélise durante
o desenvolvimento, sera util para reduzir custos de manutencio. Boas técnicas de
engenharia de software, como a especificagdo precisa, o uso de desenvolvimento
orientado a objetos e o gerenciamento de configuragio contribuem para a reduciio

dos custos de manutengdo.

Os principais fatores que distinguem o desenvolvimento da manutengdo e que levam

a custos elevados de manutencio sdo:

» Estabilidade da equipe ~ a equipe de desenvolvimento do sistema normalmente
se dispersa ap6s a entrega do projeto, deixando a necessidade de formar uma
nova equipe. Esta, por sua vez, precisa de muito esforgo para compreender o

sistema existente e prestar a manutencio;

15

Responsabilidade contratual — o contrato para fazer a manutengo de um sistema,
geralmente € separado do contrato de desenvolvimento. Contudo, existe a
possibilidade da manutencfio ser concedida a uma empresa diferente. Esse fator,
juntamente com a instabilidade da equipe, resulta em nenhum incentivo para que
a equipe de desenvolvimento escreva o software de maneira a facilitar sua

modificagio;

Habilidade da equipe — a manuten¢io pode ser designada a um pessocal técnico
mais novo, pois requer menos habilidade com o desenvolvimento. Além disso, o
sistema pode ter sido escrito em uma linguagem obsoleta e o pessoal de
manutengio pode ndo ter muita experiéncia com ela, havendo a necessidade de
aprendé-la para fazer a manutengdo. Segundo Lientz e Swason (1981) é um dos
problemas da manutencio onde a demanda é competitiva para o tempo do

profissional;

Idade e estrutura do programa - a medida que os programas envelhecem, suas
estruturas tornam-se mais dificeis de ser entendidas e modificadas. Além disso,
estas estruturas podem ter sido otimizadas com wvistas a eficiéncia € nfio a
facilidade de compreensdo. Ainda, suas documentagdes podem ter sido perdidas
ou estarem inconsistentes. Pode-se ter problema para identificar a versdo mais
atual, que deve ser modificada, por ndo ter passado pelo gerenciamento de

configuragio.

2.1.3 Processo de Manutencio de Software

O processo a ser descrito ¢ apresentado por Wilson de Padua Paula Filho (2001) em

uma versdo simplificada e adaptada do processo recomendado na norma IEEE Sid.
1219-1993 — IEEE Standard for Software Maintenance (IEEE, 1994).

2.1.3.1 Objetivos

Um processo de manutengdo de software deve ser capaz de garantir que:

Os pedidos de manutengdo sejam documentados, de forma que possibilite

identificar o que ¢ solicitado e 0 que € implementado;

16

¢ Os pedidos de manutengdo sejam tratados através de processo bem definido,

para que seja possivel identificar onde tenham ocorrido problemas;
¢ Seja possivel identificar e manter as diversas versdes de cada produto;
* Seja possivel produzir um histérico das varias alteragdes aplicadas sobre um

produto.

Wilson de Padua (2001) aconselha o uso das praticas de Gestdo de Software para
atingir estes objetivos através:

¢ do controle dos componentes do produto como itens de Gestio de Software;

» da organizacdo destes itens como linha de base;

* do controle e checagem de todas a alteragdes;

¢ da recuperagio e auditoria de todas as modificagdes,

» do facil acesso a versdes oficiais, atualizadas por todos 0s membros da equipe.

2.1.3.2 Classificacio das Solicitacies de Manutencio de Software
As solicitagSes de manutengiio de software sdo classificadas quanto ao tipo:
e Problema que nfo de manuten¢do — o problema relatado ¢ erro do usuério ou
defeito em parte que ndo seja do produto;
¢ Correcio urgente — problema que traz perturbagio significativa ao trabatho do
usuario;
o Corregdo ndo-urgente — problema que pode ser contornado por um periodo de
tempo razoavel;

¢ Melhoria menor — aperfeigoamento do produto, de grande utilidade que pode ser

fetto com custo, prazo e risco pequenos;

e Melhoria maior — aperfeigoamento do produto, de utilidade mais distante para o

usudrto, que ndo pode ser feito com custo, prazo e risco pequenos.

17

2.1.3.3 Descricio do Processo de Manutencdo de Software

O processo de manutengio de sofiware é composto por cinco fases consecutivas,
correspondentes a identificac8o, analise, desenho, implementagdo e testes.
Descrevem-se a seguir estas fases. Ao longo destas fases aparecem iniimeros
personagens distintos, que se encontram envolvidos com elas. A Figura 2.1 apresenta

uma visdo geral destes personagens.

i Gerente de | ;9(
Produto

Represenrta'nle Comissio de Controle
dos Usuarios de Configuragiio de
o Software

N

Proprictario : :
do tem Grupo de Gestao de
Configuragdes de
T T Software
Grupo de Qualidade de
Sofiware

Figura 2.1 — Equipe envolvida no processo de manutengio

Os personagens que comparecem na Fig. 2.1 representam papéis bem definidos neste

cenario. Estes papéis estdo descritos a seguir.

¢ Gerente de produto — responsavel pela manutencio de um produto ou grupo
correlato de produtos onde toma as providéncias necessarias para que OS
procedimentos de manutencdo sejam respeitados; dirige 2 Comissdo de Controle
de Configuracdes de Software, autoriza a liberagio dos itens do respectivo

produto para manutencio; acionando os proprietarios destes itens; recebe os itens

18

modificados submetendo-os a testes, revisdes ¢ demais procedimentos cabiveis de
Garantia da Qualidade; aciona as alteragBes das linhas de base para refletir as
modificagGes efetuadas; providencia a reconstrucio dos produtos; providencia a
distribui¢do e a instalagdo dos produtos modificados no ambiente dos clientes e
comunica aos clientes e usuarios providéncias que devam tomar em conseqiiéncia

das atividades de manutengéo;

Representantes dos usuarios — cada produto tem um representante dos usudrios.
Este, recebe as notificagdes de problemas enviadas pelos usuarios; analisam estas
notificagdes para verificar se requerem ag¢les de manutencdo, assisténcia no
usuario ou outro tipo de providéncia e caso se trate de agdes de manutengdo,

formalizam sua solicitacéo;

Proprietarios dos Itens — responsaveis por efetuar fisicamente os procedimentos
de alteracdo dos itens que constituem o produto. Um produto pode ter um tnico
proprietario, ou seus itens podem ficar sob a responsabilidade de profissionais
especializados por item. Cada proprietario emite um parecer sobre as solicitagbes
de manutengdo dos itens sob sua algada; analisa, desenha, implementa, testa e
documenta as modificagdes que se fagam necessarias e submetem ao gerente do

produto os itens modificados;

ComissBo de controle de configuragdes de software — responsivel por um
produto ou grupo de produtos correiatos. Autorizam o estabelecimento de linhas
de base e a identificaclio de itens de configuracio dos produtos; representam os
interesses de todos os que podem ser afetados por mudangas nas linhas de base;
emitem parecer sobre as solicitacdes de manutengio dos produtos sob sua algada,
revisam ¢ autorizam alteragGes nas linhas de base dos produtos em operagiio e

autorizam a construgio de produtos a partir das linhas de base;

Grupo de gestdo de configuragGes de sofiware — na area de manutencdo, este
grupo responsabiliza-se em checar a conformidade das linhas de base dos
produtos, através de Auditorias de Gestio de Configuragbes; administram a
Biblioteca de Manutencio de Software, inclusive manutengio, analise de
integridade e realizagdo de cOpias de seguranga; comunicam a Geréncia de

Manuten¢io os problemas relativos & Gestdo de Configuragdes encontrados

19

dentro dos produtos, para que sejam providencias suas resolugbes; emitem
periodicamente, relatGrios sobre as atividades de Gestio de Configuraghes a
Gestdo de Configuragdes; verificam as providéncias tomadas pelos gerentes de
produto para resolucio dos problemas encontrados ¢ comunicam a Geréncia
Executiva em casos de problemas encontrados ndo serem resolvidos no nivel de

produtos;

* Grupo de qualidade de software — é um grupo de posigio independente ao projeto
responsdveis pelas revisGes de software com énfase na garantia da qualidade.
Estes, recebem os resultados das atividades enviadas pelo gerente do projeto e os
repassam para a equipe de revisio técnica recebendo, apds a revisdo destes, o
Relatorio de Revis#o Técnica. Estes relatorios sdo registrados pelo grupo de
qualidade de software, em uma base de revisdes e encaminhados para o gerente do

projeto.

Fase de Identificacio

Na fase de identificaciio, as Solicitacdes de Manuten¢do de Software sdo recebidas
classificadas e priorizadas pelo Gerente do Produto. A solicitagio pode ser aceita
normalmente, aceita em regime de emergéncia, incorporada em um lote para
processamento futuro ou rejeitada, quando se identifica que o problema ndo é de
manutengio. Para cada tipo de classificacfio, o Gerente do Produto tera uma atitude

correspondente.

Fase de Analise

Nessa fase, o Gerente do Produto ou alguém por ele designado, realiza uma analise
de impacto da modificagdo solicitada, gerando um Relatério de Avaliagio de

Solicitagiio de Manuten¢do procurando determinar os respectivos custos e beneficios.

Baseada nesses dados, a Comissio de Controle de Configuraces de Software do

produto decide se a manutengio ser efetuada ou ndo.

Se a solicitagio for rejeitada, o Gerente do Produto comunica a rejeicio ao

Representante dos Usudrios, através de Relatorio de Rejeigio de Alteracdo. Caso

20

contrario, se a solicitagio for aprovada, o Gerente do Produto emite a Proposta de
Alteragio para o Grupo de Gestio de Configuragdes de Software, para cada

Proprietario de Item afetado pela solicitacio e para o Representante dos Usuarios.

Fase de Desenho

Nesta fase de desenho, o Grupo de Gestdo de Configuragdes de Software libera a
linha de base do produto para os Proprietarios dos Itens afetados, enviando a estes €
ao Gerente do Produto o Aviso de Liberagio de Produto. Estas alteragGes podem
envolver cddigo, desenho e testes. Sdo identificados os itens afetados, assim como o0s
testes de regressio que deverfio se aplicados. O desenho das alteragdes e dos
respectivos testes se refletem em novos dados para a Proposta de Alteracfo revisada:
os itens existentes podem ser alterados, e € incluido um plano de testes especifico da

modifica¢do desenhada.

Fase de Implementagio

Nessa fase, os Proprietarios dos Itens realizam as alteragdes no ¢Odigo, executam 0s
testes de unidades dos mddulos afetados e atualizam os modelos e documentos,
quando necessario. O Gerente do Produto coordena os testes de unidade e de
integragdo desenhados, a consolidagdo e revisdo da linha de base provisoria e a

atualizagio dos documentos e modelos.

Fase de Testes

Na fase de testes, sdo realizados os testes de aceitagio e regressdo relativos aos itens
alterados, coordenados pelo Gerente do Produto. Este, envia os relatorios das
revisdes e dos testes ao Grupo de Qualidade de Sofiware, o qual realiza auditoria da
qualidade da linha de base modificada proviséria. O Gerente do Produto envia a
linha de base modificada para o Grupo de Gestdo de Configuragio de Software,
Juntamente com um Relatorio de Formalizagio de Alteracio. O Grupo de Gestio de
Configuragido de Software, por sua vez, incorpora a linha de base modificada &

Biblioteca de Manutengio.

21

Fase de Instalacao

A fase de Instalagiio completa o ciclo de manutengio, instalando ¢ produto alterado
junto ao cliente. Nessa fase o gerente do produto entrega ao representante dos
usuarios as copias dos itens que deverdo ser instalados ou reinstalados junto ao
cliente. O representante dos usudrios providencia a instalacio definitiva, com
assisténcia do gerente do produto, conforme o necessario e o combinado, e envia ao

gerente do produto um Aviso de Aceitagio de Alteragdo.

2.1.4 Manutencio da Especificacio

Apés o desenvolvimento de um sistema ter sido terminado e este ter entrado em
operacdo, quase todos os analistas e desenvolvedores sio deslocados para novos
projetos. Porém, o trabalho feito pelo analista de sistemas continua a ser importante

pots, a especificagiio precisa ser mantida durante o periodo de vida do sistema.

De acordo com Edward Yourdon (1990}, os sistemas de informag¢les tém uma
importancia caracteristica relacionada 4 manuten¢io: eles duram mais que os
desenvolvedores ou os usuarios que estiverem envolvidos no desenvolvimento
original do sistema. Outro ponto importante, é que eles tendem a ser complexos
desde o inicio, e a complexidade cresce durante os anos de manutengio. Por isso, é
dificil alguém que nfio esteve envolvido no desenvolvimento do sistema original ou
que ndo possea uma documentagio dos requisitos e do projeto, entender o sistema

para fornecer a manutenco.

A manuten¢do da documentagio € a Gltima coisa que alguém deseja fazer, e muitas
vezes acaba por ndo ser feita, quando é dado importéncia apenas 4 corregdo de um

problema.

2.1.4.1 Pré-Requisitos Necessirios

Para se ter uma manutengfio apropriada, inicialmente recomenda-se garantir que a
documentagdo do sistema esteja completa, consistente, correta e atualizada quando

este entrar em operacéo.

22

Além de se certificar que a documentacfo esteja correta, deve-se assegurar de que

existe um mecanismo para executar modificacGes continuadas nesses documentos.

2.1.4.2 Como fazer

Edward Yourdon (1990) propde que a primeira regra bésica da manutencio de
sistemas € examinar o impacto na especificagdo de requisitos do sistema de qualquer
modificagio proposta. Qualquer modificagdo deve ser ilustrada, documentada e
verificada com o usudrio, fazendo as modificagdes adequadas no modelo do sistema.
Esta manutencfio inicia-se pelo preenchimento de um formulario que pode ser

denominado Solicita¢do de Alteracio de Sistema.

A modificagbes solicitadas podem ser minimas que s6 requeiram alguns minutos de
trabalho ou podem exigir um tempo consideravel para a realizagdo. Independente
disso, o grupo responsavel pela alteragio deve produzir uma Declara¢io de Impacto,
a qual apresentara uma declaragdo precisa e detalhada das mudangas que terdo de ser
feitas na especifica¢iio do sistema para implementar a modificagdo proposta. Junto
com este documento, deve haver uma Declaragdo do Impacto Econdmico, o qual
implicara no custo da implementagio da alteragdo e o beneficio estimado que

derivara dela.

Ha algumas modificagdes que ndo causam impacto na especificagio do sistema tais
como: a corregio de um erro de programa, a modificagio do codigo para melhorar a
legibilidade ou a eficiéncia do sistema ou uma mudanga no hardware existente ou do
software de sistema — compilador, sistema operacional, sistema de gerenciamento de
banco de dados. Mesmo assim deve ser emitida uma Declaragio do Impacto
Econdmico para que o usudrio e o setor de desenvolvimento de sistemas sejam

informados dos custos e beneficios relacionados aquela alteragéo.

As modificacbes podem também causar atualizacdes em manuais, em procedimentos
de operaglo ¢ em varios outros componentes de sistema. Porém, o documento mais
importante € a Declaragio de Requisitos, o qual deve ser mantido atualizado. Sem
isso, futuras modificagGes podem se tornar mais dispendiosas, mais consumidoras de

tempo ¢ mais penosas do que normalmente seriam.

23

2.2 Extreme Programming - XP

Segundo Kent Beck (2000), esta metodologia recebe este nome porque o termo
Extreme enfatiza o uso extremo de préticas que se mostram funcionais, como:

revisdes de codigo, teste, simplicidade e ciclos curtos e iterativos.

Kent Beck relata que um dos principais problemas relacionados ao desenvolvimento
de software ¢ o risco. Atrasos no cronograma, projetos cancelados devido a esses
atrasos, sistemas tornando-se obsoletos, alta taxa de defeitos, mudangas de requisitos
e saida de importantes membros da equipe de desenvolvimento sfo exemplos de

riscos que podem resultar no fracasso de um projeto de software.

Extreme Programming — ou XP — é um novo modelo para o processo de
desenvolvimento de software que visa alcangar duas metas almejadas pela indistria
de tecnologia da informagdo: desenvolvimento rapido e consistente com as reais
necessidades do cliente e facil manutenibilidade, permitindo que o software seja

modificado 2 medida que as necessidades do negdcio se alteram ou ampliam.

Extreme Programming comegou a ser desenvolvido em 1996 por Kent Beck no
Departamento de Computagdo da montadora de automéveis DaimlerChrysler, e
possui muitas diferencas em relagiio aos outros métodos, podendo ser aplicado a

projetos com altos riscos e requisitos dindmicos.

Comunicagdo, Simplicidade, Feedback ¢ Coragem sio os quatro lemas adotados
pelos seguidores de XP, que correspondem a quatro dimensdes nas quais os projetos
podem ser melhorados. XP oferece condigdes para que os desenvolvedores possam
responder de forma confidvel as alteragBes de requisitos propostas pelos clientes,

mesmo em estagios finais do ciclo de vida do processo.

Entretanto, XP ndo se aplica bem a todo e qualquer tipo de projeto e, como todo
processo, possui algumas restrigdes. Para que sua aplicagio seja produtiva sdo

necessarias algumas caracteristicas, entre elas;

¢ Grupos Pequenos — XP supde que as equipes de desenvolvimento de um projeto

possuem de 2 a 10 programadores;

24

¢ Trabalho em equipe — XP expande a equipe de desenvolvimento incluindo forte
integraciio entre gerentes e clientes durante todo o processo de

desenvolvimento,

e Testabilidade - é mister poder criar testes funcionais e unitarios automatizados.

As vezes é necessario alterar o projeto do sistema para facilitar os testes;

» Produtividade — € necessdria uma equipe de desenvolvimento comprometida e
dinfmica para assegurar um alto grau de produtividade, que ¢ indispensavel na

realizagdo dos projetos XP.

e Agilidade na comunicagdo com o cliente — a metodologia de desenvolvimento
enfoca a rapidez da implementacéo e, desta forma, a comunicagdo com o cliente
deve ser agil. E preciso que o cliente especialmente dedicado ao projeto possa

tomar decisGes rapidas para garantir o cronograma do projeto.

Desta forma, XP requer uma mudanga cultural profunda, o que nem sempre é ficil
alcancar. Além disso, alguns obstaculos & sua implementagio podem surgir como:
gerentes ou clientes que insistem em ter um conjunto completo de especificagdes ou
um projeto detalhado antes da fase de codificagdio, ou ainda, sistemas com uma
grande quantidade de aplicacBes ja existentes e dificeis de serem alteradas ndo
oferecem flexibilidade suficiente para garantir a simplicidade no codigo, um dos

requisitos de XP.

2.2.1 Valores, Principios ¢ Requisitos Basicos de XP

Kent Beck (2000), apresenta um conjunto de valores, principios e requisitos basicos
que visam alcancar eficiéncia e efetividade no desenvolvimento de software,
seguidos pelo XP. Os valores sdo quatro: comunicagfo, simplicidade, feedback e
coragem. Nestes valores, estio fundamentados alguns principios basicos: feedback
rapido, simplicidade, mudangas incrementais — e apenas quando necessirias — ¢
trabalho com qualidade. Por fim, nesses principios se baseiam os doze requisitos

basicos adotados por XP:

1) Processo de Planejamento (Planning Process), também chamado de Plamning

Game — o processo de planejamento de XP permite que o "cliente XP" defina o valor

Vi

de negdcio dos recursos desejados e utilize estimativas de custo fornecidas pelos

programadores para decidir o que é necessario ser feito e o que pode ser adiado.

2) Pequenos langamentos — as equipes XP colocam um sistema simples em

produgio com antecedéncia, e o atualizam fregilentemente em ciclos bastante curtos.

3) Metéaforas do Sistema — as equipes XP utilizam um "sistema de nomes" e uma
descrigdo do sistema sem a utilizagio de termos técnicos, para guiar o

desenvolvimento ¢ a comunicagdo com o cliente,

4) Projeto simples — um programa construido através do método XP deve ser o mais
simples possivel satisfazendo os atuais requisitos, sem a preocupagio de atender

outros que surgirdo no futuro. O foco esta em prover valor de negdcio.

5) Teste — as equipes XP focalizam a validagdo do software durante todo o processo.
Os programadores desenvolvem software escrevendo primeiro os testes, e so entdo o
software que atenda aos requisitos desses testes. Os clientes provém testes de

aceitagdio para ter certeza que 0s recursos necessarios estéo sendo fornecidos.

6) Reconstrugdo — as equipes XP procuram aperfeicoar o projeto do sistema durante
todo o desenvolvimento, mantendo a clareza do software: sem ambigtidade, com alta

comunicagéo, simples, porém completo.

7) Programagdo em dupla — os programadores XP produzem o cddigo em duplas, ou
seja, dois programadores trabalhando juntos na mesma maquina. Muitos
experimentos tém mostrado que a programagio em dupla produz software de melhor
qualidade com um custo similar ou menor do que o produzido por programadores

trabalhando individualmente.

8) Propriedade coletiva — todo o codigo pertence a todos os programadores. Essa
caracteristica permite que a equipe trabalhe a toda velocidade, uma vez que as

alteracGes podem ser feitas sem atrasos, pois todos tém liberdade para fazé-las.

9) Integrag¢do continua — as equipes XP integram e constroem o sistema de software
varias vezes por dia. Isso mantém todos os programadores em sintonia e possibilita

um progresso rapido.

26

10) 40 horas de trabalho semanal — programadores exaustos cometem mais erros. As
equipes XP ndo trabalham por um tempo excessivo, mantendo-se, assim, mais

efetivas.

11) Cliente dedicado — um projeto XP é conduzido por um individuo dedicado (um
cliente), que determina os requisitos, atribui as prioridades, e responde as duvidas
dos programadores (relacionadas aos requisitos). Essa pratica melhora a
comunicagio e gera menos documentos, o que, em geral, ¢ uma das partes mais caras

num projeto de software.

12) Codigo padrio — para que uma equipe trabathe em dupla de forma efetiva e
compartilhe a propriedade de todo o cbédigo, todos os programadores precisam
escrever da mesma forma, com regras que assegurem a clareza do cédigo.

2.2.2 O Ciclo de Vida e as Fases do Processo

A figura 2.2 representa as fases do ciclo de vida do XP.

Cendrios de testes
I ‘h“‘\-‘__ﬁ
"
Historia do g
ari .
usudrio \
" Requisit
- equistios Nova histéria .
do usuaric 550;5_\
A _* ¥)
Pico Metafora Planejamento Ptanc d Uttima Testes de Aprovacio| Pequenas
I Arquitftical |a° sistema’ de Versdo L’ versho = Mteragio |- versio ~ Aceitagio |do usuéng'l versoes
v L
Estimativas / | Estimativas
incertas / corretas Proxima iteragho

FE{J'

Figura 2.2 — Ciclo de vida do XP
(Figura adaptada de http://extremeprogramming.org/map/project. html)

O ciclo de vida XP ¢ bastante curto, no entanto, esta abordagem pode fazer sentido

em um ambiente onde as mudangas de requisitos do sistema sdo fatores dominantes.

27

As Histérias do Usuario - User Stories - s3o documentos escritos pelos proprios
usuarios para a obtengfio de requisitos, para gerar as estimativas do planejamento da

versdo e para auxiliar na criag&o de cenarios de testes.

Na fase Pico Arquitetural — Architectural Spike — sdo exploradas solugbes para
reduzir riscos de algum problema técnico, os quais sfo escritos na forma de
metaforas, e também solugles que auxiliam as estimativas do planejamento da

versio.

Em Planejamento da Versdo — Release Plamming — os requisitos do cliente sdo
cuidadosamente coletados na medida em que sfio fornecidos. O planejamento
consiste em estimar diversos fatores que podem afetar o desenvolvimento do
software. Algumas das tarefas do planejamento incluem: decidir escopo e prioridade
do projeto, estimar custos e cronogramas e cria¢io de um plano para a entrega de
uma nova versio do produto. Uma diferenca entre o XP e a matoria dos modelos de
processo convencionais, ¢ que XP nio define a especificagio formal e completa de

requisitos.

Na Iteragdo — {teration — o desenvolvimento € efetuado de forma iterativa, ou seja, o
cronograma ¢ dividido em intimeras iteragGes de uma a trés semanas. Se no momento
do desenvolvimento for adicionada uma nova historia do usuario, a versdo deve ser

replanejada.

Os Testes de Aceitagio ~ Acceptant Tests — sio elaborados a partir das
especificagbes do cliente e realizados a cada iteragdo. Somente depois que todos os
erros forem corrigidos, deve-se passar para uma nova iteragio. De acordo com
Martin Fowler e Matthew Foemmel, um dos doze requisitos basicos de XP é o de
escrever testes antes do codigo. Os testes em XP sfio divididos em duas categorias:
testes unitarios e testes de aceitagio, também chamados de testes funcionais. Testes
unitarios sfio, em geral, escritos pelos desenvolvedores e tém a finalidade de testar
uma classe individual ou um pequeno grupo de classes. Ja os testes de aceitagiio sdo
usualmente escritos pelos proprios clientes ou por uma equipe de testes externa, que
conta com a ajuda dos desenvolvedores, e tém a finalidade de testar todo o sistema,

de ponta-a-ponta. Para Ambler (2004), os testes de aceitagdo sdo considerados

28

artefatos de requisitos. As atividades de teste sdo realizadas durante todo © processo
de desenvolvimento e o codigo é construido com o proposito de satisfazer os
resultados esperados. E na medida em que um novo cddigo é adicionado, novos
testes devem ser realizados para assegurar que impactos negativos ndo venham a

QCOITEr.

As Pequenas Versdes -~ Small releases ~ sio liberadas para utilizagio assim que
todas as iteragOes sejam finalizadas, ou seja, depois que todo o desenvolvimento ¢

todos os testes sejam concluidos.

2.2.3 Algumas consideragdes sobre o ciclo de vida XP

Ambler (2004) agrupa as etapas de Teste, Codificacdo e Projeto em uma fase que
chama de Itera¢@es para Entrega, seguindo-se a ela uma fase de Producéo, na qual o
sistema ¢é testado no ambiente final de produgdio. E nesta fase que se aplicam os
testes de sistema, de carga e de instalagio, podendo surgir novos defeitos, que

necessitam ser consertados.

A fase de Manutengdo da XP ¢€ o estado normal dos projetos, englobando todo o

ciclo de vida; assim, € feita a suposi¢io que os projetos sempre estio evoluindo.

2.2.4 Estratégias de Gerenciamento

A principal estratégia de gerenciamento em XP baseia-se na utilizagdo de principios
basicos de negocio: entrega do produto em fases, feedback rapido e concreto, clareza
e objetividade das necessidades do sistema e a alocagdo de especialistas para

executar tarefas especificas.

Em muitos casos, o planejamento estratégico e a tomada de decisGes sdo feitos de
forma centralizada, isto é, sdo realizados por uma tUnica pessoa responsivel: o
gerente. Ou entdio ocorre o oposto, todos tomam decisdes sem adotar nenhum
critério. Para balancear esses dois extremos, XP recorre novamente aos principios a

que se propoe:

)

o Responsabilidade aceita — o papel do gerente ¢ salientar o que € necessario ser

feito, e ndo distribuir tarefas;

e Trabalho com qualidade — existe uma grande diferenca entre o gerente exigir
que os desenvolvedores fagam um bom trabatho e o gerente colaborar para que

os desenvolvedores fagam um trabalho ainda methor;

¢ Mudangas incrementais — o gerente deve orientar a equipe durante todo o tempo,

e ndo simplesmente apresentar um manual de regras logo no inicio do projeto;

» Meétricas — sdio as principais ferramentas de gerenciamento em XP. A medida
principal a ser obtida ¢ a proporgdo entre o calendario atual e o tempo estimado
para o desenvolvimento. A medida entre tudo que foi previsto e o que de fato
ocorreu também € essencial para a melhoria no processo. No entanto, quaisquer
que sejam as métricas coletadas, elas devem refletir a realidade e devem ser
precisas. O gerente também deve assegurar que as métricas sejam visiveis a

todos cujo trabalho esta sendo medido.

2.3 Rational Unified Proces — RUP

O Rational Unified Process (RUP) é um processo de engenharia de sofiware
desenvolvido pela Rational Software Corporation, cujas principais caracteristicas sdo
um desenvolvimento iterativo e incremental, orientado a objetos, com foco na
criagio de uma arquitetura robusta, empregando andlise de riscos e guiado por casos

de uso durante o desenvolvimento.

O RUP foi desenvolvido para ser aplicavel a uma grande classe de projetos diferentes
e pode ser considerado como um framework genérico para processos de

desenvolvimento.

Isso significa que ele deve ser configurado para ser usado eficientemente. A
configuragdo pode ser feita de acordo com o perfil das empresas, para definir o seu
processo padrio de desenvolvimento, ou mesmo, para projetos especificos — de
acordo com o dominio da aplicagdo — e, normalmente, envolve remogio efou

modificagdo de atividades do _framework.

30

O RUP ¢ composto por quatro fases — concepgiio, elaboragfio, construgiio e transicdo
— cada uma com objetivos especificos. Na fase de concepciio, deve-se estabelecer o
escopo ¢ a viabilidade econémica do projeto. Na elaboracio, o objetivo € eliminar os
principais riscos e estabelecer uma arquitetura estavel, a partir da qual o sistema
poderd evoluir. Na fase de construgio, um produto completo é desenvolvido de
maneira iterativa até que esteja pronto para ser passado aos usuarios, 0 que ocorre na
fase de transi¢io, onde uma versdo beta do sistema ¢ disponibilizada. No final da
transigdo pode ser iniciado um novo ciclo de desenvolvimento para a evolugio do

produto, o que envolveria todas as fases novamente.

Todas as fases sio finalizadas com um milestone no qual, contratantes e contratados

verificam se os objetivos da fase foram alcangados.

Cada fase pode comportar varias iteragbes e cada iteragfo, por sua vez, estd
organizada em um Fluxo de Trabalho - worfflows, que descrevem o que deve ser
feito em termos de atividades, responsaveis e artefatos. A figura 2.3 apresenta as

fases, as iteracdes e o fluxo de trabalho do RUP.

O RUP fornece modelos para cada artefato e guidelines para a execugio de suas

atividades.
Wi Fages s ot P
Fiuxo de Trabatho ’Cnmuiof[Elaberagio " Constiugio f Transigio |
Modelo do Negicio H
Requisitos :
Anilise e Projeto ,f"_.i’-" 5o ~i"‘ T e
inplementagao il i ? Sl farma ‘\-:“ et
Teste H o
Implantagao : i
Geréncia e : i g
Configuragéo PEEES——————- N
GETENCIT | i | et e et e B,
Ambiente b S SN S -
=S = _ —
toietal |[30 w1 @ w2 WT%E‘IW&“ I mﬂ['r‘;m
lteragdes

Figura 2.3 — Fases, itera¢Oes e fluxo de trabalho do RUP (figura adaptada da Rational
Software Corporation — http://www.rational.com)

31

As iteragBes também sdo finalizadas com milestones, que devem controlar se foram
cumpridos os objetivos especificos da iteragdo, como a realizagio de um grupo de

casos de uso, por exemplo.

O Fluxo de Trabalho do RUP é composto pelo Fluxo de Trabalho de Engenharia de
Software e pelo Fluxo de Trabalho de Suporte. O Fluxo de Trabalho de Engenharia ¢

descrito sucintamente a seguir:

e Modelagem do Negocio — envolve o entendimento da estrutura e dindmica da
organizacio cliente, garantindo que clientes, usuarios e desenvolvedores tenham

a mesma visdo da organizagdo para a qual sera feito o desenvolvimento;

s Requisitos — envolve a definigio dos requisitos do sistema e de como gerenciar

o escopo e mudangas de requisitos;

o Andlise e Projeto — envolve a traducdo dos requisitos numa especificagdo que
descreve como implementar o sistema. A UML é utilizada para modelar o

sistema;

¢ Implementagio - envolve o desenvolvimento de codigo: classes, objetos etc.,

teste de unidades e integracéo de subsistemas;

o Teste — envolve a verificagio do sistema como um todo, com testes de

integragio e conformidade com os requisitos especificados;
s Distribuigio — envolve o empacotamento, distribuicdio, instalagdo e treinamento

de usuarios, assim como o planejamento e condugio de testes beta.

O Fluxo de Trabalho de Suporte compreende as atividades necessarias para a

execugdo do Fluxo de Trabalho de Engenharia. Sdo elas:
e Geréncia de Projeto — envolve o gerenciamento de riscos, planejamento e
acompanhamento do projeto;

» Geréncia de Configuraciio e Mudangas — envolve o gerenciamento dos artefatos

gerados durante o desenvolvimento;

o Configuragdo do Ambiente — envolve a organizagio do ambiente de trabalho

para a equipe do projeto e a configuragio do RUP para o projeto.

32

2.4 Engenharia Reversa

Conforme Ian Sommerville (2003), Engenharia Reversa € o processo em que se
analisa o software com o objetivo de recuperar seu projeto e sua especificagio sem

alterar o codigo-fonte.

O processo de Engenharia Reversa inicia-se com uma fase de analise, durante a qual
o sistema ¢ analisado, utilizando-se ferramentas automatizadas, a fim de descobrir
sua estrutura. Engenheiros trabalham com o codigo-fonte do sistema e sen modelo
estrutural adicionando informagtes obtidas mediante a compreensdo do ststemna.
Essas informagdes sdo mantidas como um grafo direcionado, que € vinculado ao

codigo-fonte do programa.

Os browsers de armazenamento de informacgdes sfio utilizados para comparar a
estrutura do grafo e o codigo e para anotar informagdes extras no grafo. Documentos
de vérios tipos, como diagramas de programa e de estrutura de dados e matrizes de
rastreamento, podem ser gerados a partir do grafo direcionado. As matrizes de
rastreamento mostram onde as entidades sdo definidas e referenciadas nos sistema. O
processo de geragiio de documentos € iterativo, uma vez que as informagfes de
projeto siio utilizadas para melhorar ainda mais as informagdes contidas no

repositorio do sistema.

Depois que a documentacio de projeto do sistema foi gerada, outras informagdes
podem ser adicionadas ao repositorio de informagbes para ajudar a recriar a

especificacio do sistema.

2.5 Consideracdes finais sobre os métodos

RUP e XP vém de diferentes filosofias. RUP é um framework de componentes de
processos, métodos e técnicas que podem ser aplicados a qualquer projeto de
software especifico. Devido a sua grande abrangéncia, € esperado que scjam feitas
adaptagOes, seja em relagio a natureza do projeto ou da organizagio em que estd

sendo utilizado, para que seja melhor aproveitado.

33

XP ¢ um processo /eve, centrado em codigo, para pequenos projetos cujos requisitos
ndo possam ser bem definidos antecipadamente, ou em que se espera que hajam
grandes mudancas, durante o projeto. Ele enfatiza a comunicacio continua entre
usuario e membros da equipe de desenvolvimenio. Como RUP, ele é baseado em
iteragbes que incluem varias praticas como: Pequenos Releases, Design Simples,

Testes e Integraciio Continua.

O Processo de Manutencgiio estudado no item 2.1, aconselha o uso de boas técnicas
de engenbaria de software que contribuam para uma manutengio simplificada e de
custos menores. Defende a liberagio de releases com uma quantidade pequena de
reparos, assim como uma das praticas de XP. Este processo de manutencio possui
suas fases bem definidas, em contrapartida, nfo prevé a possibilidade de iteragdes em
sua fase de implementago, como XP, ou em qualquer outra fase como o RUP, onde
a iteragio pode ocorrer uma ou mais vezes dentro de cada fase, envolvendo diversas

disciplinas conforme a natureza da mesma.

A Engenharia Reversa tem com objetivo derivar o projeto ou a especificagio do
sistema a partir do codigo fonte, permitindo assim, a aplicagio de uma metodologia

de modo que facilite na manutengio do programa.

Abaixo citam-se algumas tarefas e produtos que sdo gerados nos processos

apresentados, descrevendo a visdo de cada processo em relagio a elas:

o Identificar a Viabilidade — RUP e XP concordam que é melhor identificar o
mais cedo possivel se o projeto € viavel, a fim de evitar o gasto de recursos
valiosos em um projeto condenado. Enquanto o Processo de Manutengo faz a

analise sob a solicitagfo;

e Plano de Aceitagio do Projeto - Em um projeto XP ele aparece na forma da
aceitago dos testes criados pelo usuario. JA em RUP e no Processo de
Manutencdo estudado, o usuario ndo constroi os testes, mas o critério de acesso
deve ser direcionado pelo usuario, seja diretamente, ou através de outro papel,

como o do Analista de Sistemas ou do Gerente do Produto;

34

Modelos — Os Casos de Uso produzidos em RUP correspondem aos User
Stories escritas pelo usuario em XP. A diferenga € que o Caso de Uso é um
conjunto completo de agdes iniciado por um ator (alguém ou algo fora do
sistema). O Caso de Usc pode conter varias User Stories. No Processo de
Manutengdo, estes modelos devem existir para orientar os desenvolvedores na

manutengo e sofrer atualizagdes de acordo com as implementagdes solicitadas;

Meétricas — Hj trés aspectos para serem medidos no projeto de software: tempo,
tamanho e defeitos. RUP prové diretrizes sobre o que pode ser medido e como
medir além de oferecer exemplos de métricas. J& XP prové métricas simples
usadas para determinar o progresso e estimar a conclusdio de tarefas, fazendo um
forte uso de uma pequena quantidade de métricas. O Processo de Manutencio,
também possui métricas que podem ser Uteis para avaliar a facilidade da

manutengdo.

35

Capitulo 3 -~ INVESTIGACAO DO PROCESSO VIGENTE NA EMPRESA

Neste capitulo estuda-se o processo de desenvolvimento de software utilizado na
empresa. O objeto principal deste processo € um software de Call Center, destinado a

apoiar as atividades de suporte a clientes de uma empresa financeira.

Utilizando-se a estrutura do RUP como base, serdo investigados neste capitulo: o
processo, a arquitetura do sistema de Call Center, a formagio da equipe de trabalho,
os documentos envolvidos, o fluxo de documentos e de informaches e a ferramenta

de apoio.

3.1 Visio geral do processo de manutencio na empresa

O desenvolvimento de software se da através de um processo continuado. Estando ja
o software em operagdo, pode-se caracterizar tal processo como sendo de

mianutencao.

O processo de manutengiio é semelhante ao processo de Ian Sommerville (2003),
iniciado por um conjunto de pedidos de alteragdes por parte da Equipe de Processos
do cliente. Um novo release do sistema ¢ planejado. Durante esse planejamento,
todas as mudancas propostas — reparo de defeitos, adaptagio de plataforma e novas
funcionalidades — s@o consideradas e, entdo, é tomada uma decisdo sobre quais
mudangas devem ser implementadas na proxima versdo do sistema. As mudangas sdo
implementadas e validadas e uma nova versdo do sistema ¢ liberada. Depois disso, o
processo se repete com um novo conjunto de mudangas propostas para a nova

versdo. A Figura 3.1 mostra uma visdo geral desse processo.

36

/" Andfisede \ [Planejamento /Implementagdo , [Released i
Impécto \ de Release \ de Mudangas \ Sistema)
Alteragdes -‘ pa) _ \ ea) _
} }

" Adeptaciode Incremento de
Plataforma Sistema

Repato de
Defeitos

Figura 3.1 — Visdo Geral do Processo de Manuteng3o, segundo lan Sommerville
{2003)

3.2 As pessoas envolvidas — a equipe de projeto e manutencao

Neste processo, varias pessoas diferentes se encontram envolvidas. Em principio, as

pessoas e equipes sio:

e Equipe de Processos — composta por pessoas do cliente com conhecimento do
negdcio da empresa. Esta equipe ¢ que solicita as mudangas a serem feitas no

sistema.

» Gerente de Manutengio de Software — responsavel pelas seguintes atividades:
— tomada das providéncias necessérias para que sejam respeitados os
procedimentos de manutengio;
— contato com o cliente para definir as solicitagGes prioritarias e a data da
nova versao;
— manutenciio da Geréncia Executiva, com conhecimentos sobre a situagio da

equipe de desenvolvimento e do cliente.

e Coordenadores ~ responsaveis pelas seguintes atividades:
— contato com o cliente para definir as solicitagdes prioritarias e a data da
nova versio,
~ providéncias quanto & distribuigio das tarefas aos analistas e

desenvolvedores;

37

— garantia de liberagio das solicitagdes no prazo estimado — ou negociacio,

com o cliente, de um novo prazo, caso ocorra a liberagdo n3o proceda.

e Analistas — responsaveis por:
~ analisar a especificagfio do cliente;
— desenvolver a maquete;
~ estimar prazos,

— testar a implementa¢io.

e Desenvolvedores — recebem as solicitagbes dos coordenadores ou dos analistas;
analisam, implementam, testam, implantam as solicitagdes recebidas ¢ submetem
informagdes relativas a um posicionamento sobre a manutengfio, aos respectivos

coordenadores ou analistas.

¢ Equipe de Banco de Dados — responsavel pela administragio do Banco de Dados.
Analisa qualquer implementagio necessdria no Banco de Dados e, na real

necessidade, fazem a devida manutengio.
A Equipe de desenvolvimento € constituida por:

e Um Gerente de Manutencgio de Software;
» Dois Coordenadores;
e Quatro Analistas;

¢ Dezenove Desenvolvedores.

3.3 Documentos enveolvidos

O processo de manutengio descrito na Fig. 3.1 envolve a circulagiic de um conjunto

de documentos, que estdo descritos a seguir.

e Documenio de solicitagéio: documento preenchido pelo cliente em um sistema de
apoio as manutengOes, como requisito para a manutengiio evolutiva, a qual tem
como objetivo aperfeigoar o software, implementando novos requisitos, ou

manter a funcionalidade do sistema, melhorando sua estrutura e seu desempenho.

38

Neste documento, devem ser preenchidos: o nome do solicitante, o projeto a

sofrer alteragdio, a data de abertura e a descricdo da implementag&o;

Documento de Ocorréncia: é um documento em que se descreve a necessidade
de uma manutencdio corretiva, ou seja, para qualquer defeito notificado pelo
cliente, ou até mesmo pela equipe de desenvolvimento, é aberta uma demanda
para a corregdo deste. No documento de ocorréncia devem ser preenchidos: o
nome do solicitante, o projeto a sofrer correcdio, a data de abertura e a descrigéo

do defeito;

Especificagéio do cliente: contém a necessidade do cliente que o sistema devera
contemplar. Este documento é gerado pela Equipe de Processos, quando uma

solicitaco possul uma complexidade maior;

Maguete: Documentagdo desenvolvida com base na Especificagiio do cliente,
contendo o cronograma de desenvolvimento e implantacio e as regras de

negocio, no formato de um portugués estruturado;

Controle de Logicas por Swap: Documentacio preenchida pelo desenvolvedor
para cada swap a ser realizado (semelhante a um Check List). Contém o niimero ¢
a descricio da demanda resolvida, o projeto em questdo, a logica e as telas
envolvidas na implementagdo, nomes de arquivos e as datas de disponibilizacio

da alteragdo em cada ambiente;

Controle de Demandas por Swap: E de responsabilidade do coordenador.
Contém a lista das demandas a serem disponibilizadas em cada swap. Discrimina
0 numero, o tipo e a descrigio da demanda, o desenvolvedor responsavel, o
solicitante ¢ a situagdio em que a demanda se encontra (Parada / Em
desenvolvimento / Em testes de desenvolvimento / Em testes em ambiente de

Pré-Produgio);

Manual do Usudrio: Desenvolvido pela Equipe de Processos.

39

3.4 Fluxo de Documentos e fluxo de informagdes

Documentos ¢ informagdes necessitam fluir através da equipe para que as
solicitagBes possam ser devidamente documentadas ¢ agilizadas. Documentos e

informagdes possuem seu proprio fluxo.

3.4.1 Fluxo de Documentos

A Figura 3.2 demonstra o fluxo dos documentos entre as pessoas da equipe de

desenvolvimento e o cliente, representado pela Equipe de Processos.

As solicitagdes demandadas pela Equipe de Processos, sdo encaminhadas ao
coordenador de uma equipe de desenvolvimento (a) o qual as prioriza juntamente
com a Equipe de Processos, montando o documento de Controle de Demandas por
Swap. O coordenador encaminha as solicitagGes (b) para um analista ou
desenvolvedor, dependendo da complexidade da solicitagio. Caso seja uma
solicitagdo acompanhada de um documento de Especificacdo do Cliente, o analista
retornara uma Maguete {c) para aprovacdo da Equipe de Processos. Se esta Magquete
for aprovada (d), retoma para o analista que por sua vez a encaminha ao
desenvolvedor () o gual, apos a manutengio, preenchera o Controle de Logicas por

Swap (f) que devera ser entregue ao coordenador apos a realizagio do Swap.

c l l d
[) 1 a B 1 b [|

Equipe de | ————> Coordenador | ~———p Analista
Processos | | '
I] |

f

-— ——T _e — - -
I Desenvolvedor |

ya

Figura 3.2 — Representago do Fluxo de Documentos

40

3.4.2 Fluxo de Informagdes

A Figura 3.3 demonstra o fluxo de informagio que ocorre entre as pessoas da equipe

de desenvolvimento e o cliente, representado pela Equipe de Processos.

O responsavel pela solicitagio da Equipe de Processos especifica sua necessidade (a)
para o Analista ou para o Desenvolvedor encarregado pela demanda em questdo. Este
processo se origina com a abertura de uma solicitagio pela Equipe de Processos via
sistema. Se a manutencdo requerida for complexa, a Equipe de Processos ird gerar
um documento de especificagio o qual sera enviado por e-mail. Caso a
complexidade tenha requerido o Analista, este fard a anslise da manutencdo e
aprovando-a, encaminba a solicitagio e a especificagiio, se houver, ao Desenvolvedor
{b). Este, por sua vez, comunica ao Analista a transi¢io de etapas da solicitagdo, tais
como, em desenvolvimento ou testes em desenvolvimento ou testes em ambiente de
homologagdo(c). Caso contrario, o proprio Desenvolvedor estuda a solicitagdo ¢
entra em contato diretamente com a Equipe de Processos, na existéncia de duvidas
(d). Na etapa de testes, o Desenvolvedor comunica & Equipe de Processos a liberagio
da demanda (e). A Equipe de Processos testa a implementagdo e em caso de erro (f),
a Equipe de Processos contacta diretamente o Desenvolvedor. Para a atualizagido em
ambiente de Producdo (g), o Analista ou o Desenvolvedor comunica ao Coordenador
o sucesso da manutencfio em ambiente de desenvolvimento, confirmando a hberagio

para a nova versio.

. g

d a
Equipe de o : Analista | ——» Coordenader |
Processos 5 E
d C
¢ g
W 1
a !I Desenvoivedor
f

Figura 3.3 — Representag@o do Fluxo de Informagdes

41

3.5 Arquitetura deo sistema e sua evolucio

A arquitetura de um sistema baseado em bancos de dados € fortemente influenciada
pelo sistema basico computacional sobre o qual o banco de dados € executado. O
sistema utilizado na empresa da autora tem uma arquitetura baseada em Banco de
Dados Centralizados, que € executado sobre um Onico sistema computacional

(sistema centralizado), e que ndo interage com outros sistemas.

3.5.1 Gestio De Dados
O acesso a dados, se da através de um Gerenciador de Banco de Dados Oracle e de

um Banco de Dados em mainframe. Os dados localizados no mainframe sio

acessados via transagio.

Uma transagio de inpuf é enviada com dados obrigatorios a um CICS - sistema de
software que pode manipular e armazenar as entradas de muitas fontes diferentes — e
este, apresenta a transagdo ao banco de dados no mainframe e recebe como resposta

uma transacio de output.

O dados do Banco de Dados Oracle s80 acessados diretamente com a ferramenta

utilizada para desenvolver o sistema (Edge).

O gerenciamento do Banco de Dados Oracle estd sob responsabilidade da Equipe de
Banco de Dados. A manutengdo no sistema que exija uma modificacfio no Banco de
Dados — desde alteragdio de arquitetura do Banco de Dados, até alteracdo de um
simples dado — é repassada a4 Equipe de Banco de Dados a qual analisa essa alteragéo
e questiona a sua necessidade. O acesso aos desenvolvedores se restringe apenas &

consulta dos dados, com o uso de login e senha.

Os testes das manutengdes solicitadas, séo realizados em dois ambientes:

» Um ambiente de desenvolvimento, onde h2 um sistema que aponta para um
Banco de Dados Oracle de desenvolvimento, contende dados de testes;

e Um ambiente de Homologagdo, onde existe um sistema espelho do sistema de
Produg@o, mas com as alteraghes a serem implantadas, o qual aponta para um

Banco de Dados Oracle de Produgao, contendo dados reais.

42

Apbs a validagiio dos testes pela Equipe de Processos no ambiente de Homologagdo
com dados reais, as implementagdes sdo repassadas ao ambiente final, o de

Produc#o, o qual também aponta para o Banco de Dados de Produgéo.

3.5.2 Interface

A interface apresentada ao usuario € do tipo grafico, desenvolvida com o auxilio da
ferramenta utilizada, Edge, com a qual se implementa um sistema de gerenciamento
de janelas e que, também permite a comunicagio com o servidor. E uma interface

integrada no sistema usado.

Os layouts das interfaces sdo definidos pela Equipe de Processos. Estes vém
especificados, quando existentes, no documento de Especificagfio do Cliente, relativo

a uma manutengio solicitada.

3.5.3 Prototipaciio

O processo de prototipagio € utilizado quando se deseja detathar os requisitos de
software definidos pelo cliente. Em outros casos, pode ser usado para avaliagéo de
uma tecnologia a ser utilizada ou para certificar-se da forma que a interagio homem-

maquina pode assumir,

O prototipo tem como objetivo fornecer uma visdo prévia, ao cliente, da

implementag¢do solicitada, podendo detectar falhas antes de sua codificagéo.

A utilizagio do prototipo na empresa da autora, ndo é fregiiente. Este s6 € requerido
no desenvolvimento de uma atividade de maior amplitude, a qual consiste em uma
manutengdo evolutiva e exige prazos maiores para seu desenvolvimento. O protdtipo

apresentado é reutilizado a partir de sua aprovagio.

43

3.5.4 Controle de Versdes

O controle de versdo é realizado apenas com a determinacéo de datas, quando serdo
liberadas as implementagdes testadas e aprovadas pela Equipe de Processos. A
identificacio da versdo é visualizada no sistema através de uma data especificada na

tela inicial do sistema. Fica armazenada somente, a versdo que se tornou a penaltima.

3.6 Ferramenta Utilizada

A ferramenta de trabalho utilizada é uma ferramenta especifica para Call Center.
Esta ¢ nomeada como ferramenta Edge e foi toda desenvolvida na linguagem C e,

gera um codigo interno com extensdo .obj. E uma ferramenta orientada a eventos.

3.7 Avaliacdo sebre o processo atual de manutengio

O processo atual de manuten¢io deixa a desejar, exigindo que as fases fossem

melhor definidas, como:

e Anilise — ¢ feita superficialmente, ndo possuindo uma firme progressdo desde os
aspectos de modelagem de alto nivel — como diagramas -, aos aspectos de
modelagem de niveis mais baixos — como o desenvolvimento de especificagOes

de processos e de dicionario de dados;
e Desenvolvimento — ndo apresenta o uso de técnicas de programacio,

» Testes — ndo ha o uso de estratégias de testes para validar todos os processos que

envolvem a manutenc¢io implementada;

e Implantagdo — ndo ha um controle de versdo documentado.

Neste processo de manutengdo, hi uma grande rotatividade de elementos da equipe,
tais como admissio e demissio de Gerentes de Projeto, Coordenadores, Analistas e
Desenvolvedores. Por isso, nota-se a necessidade de documentagdes como
especificacdo de requisitos do sistema, especificagio de processos ¢ de diagramas de
Entidades ¢ Relacionamentos no momento de atender as solicitagdes, podendo a sua

inexisténcia chegar a comprometer os prazos estimados para implantagio.

44

Capitulo 4 — PROPOSTA PARA MELHORIA DO PROCESSO

Nos capitulos anteriores deste trabatho apresentou-se: uma visio geral do processo
de manutencgdo, algumas metodologias, a importancia da qualidade de processo € o
estudo da situagfio atual da empresa da autora. Neste capitulo, serd apresentada uma

proposta para melhor se trabalhar no projeto continuado deste sistema.

A proposta é baseada no conteido exposto nos capitulos anteriores ¢ constitui o

nucleo da contribuigdo desta pesquisa.

Conforme apresentado no capitulo anterior, a documentagdo existente ¢ elaborada
apenas para relatar as manutengdes efetuadas e a dificuldade encontrada € a falta de
documentagio adequada que facilite o entendimento geral do sistema para realizar de
forma mais facil tais manutengdes, bem como permitir a aplicagdo de uma

metodologia que viabilize o processo de manutengio.

Levando em consideragio essa dificuldade, € inicialmente proposto um pequeno
Processo para a Engenharia Reversa, cuja contribui¢io € a elaboragio de uma
documentaciio atualizada do sistema existente tornando-o mais expressivo e de facil
entendimento, utilizando alguns modelos da Andlise Essencial (GANE;SARSON,
1982; YOURDON, 1990).

A escolha pela utilizagdo da Analise Essencial se da com base nas caracteristicas da
ferramenta usada na empresa da autora, a qual ¢ orientada a eventos, e & natureza do

sistema sendo considerado, centrado em dados.

4.1 Processo para a Engenharia Reversa

O objetivo do processo de Engenharia Reversa é identificar no sistema os elementos
que compdem os modelos da Anéilise Essencial. Essas informagdes podem ser

obtidas no codigo fonte, tinica informagio disponivel sobre o programa.

Considerando-se os modelos da Andlise Essencial, devem ser extraidos da estrutura
do codigo elementos tais como o Diagrama de Contexto do sistema, supostos

eventos, Supostas entidades externas, entidades de dados e seus atributos e

45

relacionamentos. Os documentos referentes aos modelos serio entdo criados,

auxiliando no processo de manutengio de futuras alteragdes solicitadas.

Sugere-se que a geragio do Modelo Essencial seja feita em paralelo ao processo de
manutengio por uma dupla formada por um Analista e um Desenvolvedor,
exclusivamente destacados para esse trabalho. Estes se responsabilizariam pela
geragio do Modelo Essencial da parte do sistema j& operante. A manutengdo
posterior de algum documento ja criado ou a geragio de novas documentagdes
procedentes de alguma solicitagio do processo de manutengdo, ficaria sob
responsabilidade dos Analistas responsaveis pela solicitagio, os quais devem manter
estreita comunicagio com a dupla mencionada, para nfio gerar divergéncias na

interacio do Modelo Essencial.
Os documentos propostos para a geragéo sdo:

» Lista de Eventos;
s Diagrama de Contexto;
s Diagrama de Estruturas de Dados — DED ¢

e Diagrama de Fluxo de Dados - DFD

Estes quatro passos séo discutidos a seguir.

4.1.1 Identificar os Eventos

Levantar eventos &, basicamente, identificar fatos que ocorrem no meio ambiente que
interage com o sistema e que exigem uma resposta do mesmo. Esta resposta pode ser
o armazenamento de uma informagdo ou a produgido de um resultado destinado ao
ambiente. Deve-se analisar o ambiente do sistema e registrar todo fato que, a
principio, pare¢a deferminar uma agdo do sistema. Cada evento deve ser descrito por
uma orac¢io que expresse uma idéia completa. A oragfio € uma construggo gramatical
que deve possuir um sujeito, um verbo e um objeto. Exemplo de eventos do sistema

citado no capitulo anterior sio:

1. Cliente efetua pagamento de conta de consumo.

46

2. C(liente efetua DOC.

Apods a identificagio dos eventos, a Lista de Eventos podera ser construida. Para cada
evento identificado devera constar nessa lista: o fluxo de estimulo — entrada — ¢ sua
origem, a resposta — a¢io — que o sistema deve dar ao evento e o fluxo de saida
produzido pelo sistema com seu respectivo destino - saida. A tabela 4.1 representa

uma Lista de Eventos, conforme esta proposta.

Tabela 4.1 — Lista de Eventos

Evento Descrigiio Estimulo Resposta Saida

Cliente efetna | O cliente pode realizar o | Cliente informa ¢ | Conta de Dados de
pagamento de | pagamenio de qualquer | mimero do Consumo paga | pagamento
conta de | conta de consamo. | codigo de barras | registrados no |
CcOnSumo ' da conta de | banco de
| consumo [dados.
' | Emissdo do
; , [comprovante
S | L | | de pagamento
Cliente efetua | Cliente informa | DOC efetuado. | Valor debitado |
DOC Quando o cliente os nameros das | da conta
transfere um valor para | contas de origem | | origem
uma conta cujo banco (¢ | € destino, € 0 i | creditado na
o titular da conta valor a ser | conta destino.
destino) sio diferentes | transferido | Emissdo do
da conta de origem, | comprovante
realiza-se ym DOC. | de
i | | | transferéncia |

4.1.2 Determinar o Diagrama de Contexto do Sistema

O Diagrama de Contexto é a representacio grafica do Ambiente do Sistema. Nele, o
sistema como um todo ¢ representado por um circulo (que representa um processo),
com o seu nome. Os usuarios, fornecedores e/ou receptores de informagSes, sdo
representados por retdngulos (entidades externas), rotulados pelo nome do agente
externo e as informagdes trocadas sdo as setas identificadas pelo nome do pacote de
informagdes que flui entre o sistema e seus usuarios. Contudo, deve-se identificar os
usudrios que interagem com o sistema, os dados que ele informa ao sistema e os que
ele obtém como retorno, para gerar o Diagrama de Contexto. A Figura 4.1 representa
um trecho de um Diagrama de Contexto, no caso, o correspondente ao evento 1 da
Tabela 4.1.

47

Nem todo evento € sinalizado por um fluxo de dados. Os eventos temporais, por
exemplo, nio possuem um fluxo de dados de entrada como estimulo. Nem todo
evento possui um fluxo de saida correspondente. Um evento pode ocasionar apenas o
armazenamento de um dado. Eventos diferentes podem estar assoctados a um mesmo

fluxo de dados.

—
-~ S
.

-
Pl
Cliente 41 Dados da conta de consumo ™,
e /”_\ ™,

(Sistema \
Telebanco

Ay

__t

Figura 4.1 — Diagrama de Contexto

Os fluxos de dados podem ser documentados em um documento complementar
denominado Diciondrio de Dados, onde cada fluxo seria decomposto em seus

componentes atdmicos, cujos atributos seriam registrados neste mesmo dicionario.

4.1.3 Identificar as Entidades, seus Atributos ¢ Relacionamentos

As entidades, atributos e relacionamentos serfio identificados através dos comandos
de abertura e acesso ao banco de dados. Esta identificacio resultara na geragdo do

Diagrama de Estrutura de Dados - DED.

O trabatho de geragiio do DED serd benéfico também para uma triagem do que
realmente estd sendo usado no banco de dados. Serd possivel a identificagiio de
tabelas que ndio sdo usadas e assim, elimind-las. A detecgfio de atributos ou entidades
duplicados podera implicar na unificagio destes. Contudo, o DED sera gerado sem

redundéincia e com uma estrutura real.

Deve ser levado em considera¢io que o trabalho de reestruturacio do banco de
dados, influenciard nas alteracdes de logicas, procedimentos e fungdes do sistema.

Entretanto, o Banco de Dados ¢ responsabilidade da Equipe de Banco de Dados e

48

qualguer alteragfio proposta esta fora de controle deste trabalho, cabendo a equipe de

desenvolvimento apenas fazer sugestdes sobre a reestruturacéo.

Considerando-se a arquitetura do sistema centrada em dados, deve-se considerar que
a reestruturagio dos dados pode implicar em necessidade de reestruturagdo mais
ampla, exigindo ndo s6 a alteracdio dos dados como também alterages de codigo

fonte, uma vez que os algoritmos esto intimamente ligados a seus dados.

4.1.4 Diagrama de Fluxo de Dados - DFD

De acordo com Yourdon (1990) ¢ Diagrama de Fluxo de Dados ¢ um modelo que
nos permite imaginar um sistema como uma rede de processos funcionais,

interfigados por “dutos” e “tanques de armazenamento” de dados.
Para a montagem do DFD ¢ necessario identificar no sistema:

e Processos: procedimentos em que uma ou mais entradas sdo convertidas em
saidas. Geralmente o processo € descrito com uma unica palavra ou sentenga

simples e representado por um circulo;

e Fluxos: representam o movimento de fragmentos ou de pacotes de informages
de um ponto para outro do sisterua (os “dutos”). O fluxo ¢ representado por uma

seta;

e Depositos: modelam uma colegfo de dados em repouso (os “tanques”). Para ¢
sistema em estudo, representam os arquivos do banco de dados ja identificados na
constru¢do do DED. A representagdio de um deposito na modelagem essencial sdo

duas linhas paralelas;

e Terminadores: sdo entidades externas com as quais o sistema se comunica.
Tipicamente, sdo pessoas ou um grupo de pessoas. SHo, graficamente,

representados por retdngulos.

49

A Figura 4.2 representa um DFD, o que expressa o tratamento do evento 1 da tabela

4.1

{— —L Iy Eiotuar Pagto|_— ol —
. -
s Dados da conta de consumo *|Cta. Consurmj Status da Conta de Consume ™ SoNERRE e

Figura 4.2 — Diagrama de Fluxo de Dados

4.2 Programa de Garantia de Qualidade de Software

A proposta para a garantia da qualidade do software consiste em procedimentos,
técnicas e ferramentas para garantir que um produto atenda a padrdes, que devem ser
definidos pela empresa, durante o ciclo de manutengdo do software. A qualidade sera
obtida durante o processo de manuten¢do com o objetivo da geracdo de resultados

esperados pelo cliente.

O programa de Garantia de Qualidade baseia-se nas atividades de revisdo e inspecio
as quais auxiliarfo, respectivamente, no entendimento do projeto e na garantia da

qualidade do produto, de acordo com os padrdes da organizagdo.

4.2.1 Criagio de um Grupo de Qualidade de Software

Primeiramente deve-se buscar apoio da geréncia para a implantagdo do processo de

melhoria de software.

Sugere-se compor o Grupo de Qualidade de Software com analistas da equipe de
manutencio e da equipe de Processos do Cliente que possuam, respectivamente, alta

capacidade técnica e do negdcio.

O Grupo de Qualidade de Software tera por responsabilidade criar e gerenciar Varos
processos de melhoria das atividades em curso, fazer as revisdes e inspegBes da

documentacio gerada e realizar a auditoria da qualidade da linha de base modificada.

O Grupo de Qualidade de Software deve comecar o processo de melhoria pela

divulgagio de sua existéncia, definicdo de seu escopo de atuagdo e seus objetivos.

50

Isto serviri para obter a cooperagio dos demais elementos da equipe de

desenvolvimento para as atividades que se seguiriio em busca de melhorias.

4.2.2 Qualidade na Modelagem e nos Resultados dos Produtos

Como mencionado no inicio deste capitulo, hd a necessidade de modelagem dos
processos atuais para facilitar o entendimento do sistema, beneficiando-se a
manutengio. Para conferir maior qualidade a este processo de manutencio, definir-
se-§o atividades, métodos, praticas e transformacdes que se utilizam para
desenvolver e manter um software e os produtos a ele associados como, por exemplo,
planos do projeto, documentos de projeto, codigo, casos de teste e manuais de

USU4rio.

Tendo como objetivo tornar o processo de manutencio melhor definido e
possibilitando ao software ser implementado de forma mais consistente, permite-se
que a organizacio se torne mais madura, obtendo pontos valiosos em éreas chaves
dos estagios do Modelo CMM.

4.3 Processo de Manutencio

Nos itens seguintes descrevem-se as atividades que deverdo ser realizadas no
processo proposto, juntamente com os documentos manipulados em cada fase. Note-
se que nesta proposta mantém-se o ciclo de vida original da empresa, entretanto,
incluem-se novos documentos no fluxo existente, como, por exemplo, os referentes

ao Modelo Essencial e o Documento de Planejamento de Testes.

4.3.1 Fase de Identificacio

Na fase de identificacdo, as solicitacdes de manutengdo de software sio recebidas
pelos Coordenadores, através do Documento de solicitagio que pode vir
acompanhado por uma Especificagio do cliente, ou do Documento de ocorréncia,
abertos pela Equipe de Processos ou até mesmo por integrantes da equipe de
desenvolvimento. Estas demandas sdo classificadas e priorizadas pelo Gerente de

Manutengio de Software juntamente com os Coordenadores e a Equipe de Processos

51

quando também, definem uma data para a proxima versdo. Assim como XP trabatha
com pequenas releases, este processo de manutengdo libera novas versdes com

periodicidade de 15 dias.

Apbs a priorizagdo das demandas, os Coordenadores montam o documento Controle
de Demandas por Swap, o qual é um artefato que atende a é4rea chave Planejamento
do Projeto de Software, no Nivel 2 do CMM,; sua finalidade ¢ planejar e documentar

as atividades e os compromissos do projeto de software.
Entrada(s):

¢ Documento de solicitagio / Documento de ocorréncia — Aberto pela Equipe de

Processos. O status deste documento ¢ “pendente”.

o Especificagiio do cliente — Quando for uma manuteng@o evolutiva, a Equipe de
Processos encaminhari a especificagiio referente ao Documento de solicitagio

aberto.
Saida(s):

e Controle de Demandas por Swap — Os Coordenadores relatario as solicitagbes

priorizadas.

4.3.2 Fase de Analise e Projeto

Nessa fase, o Coordenador encaminha o Documento de ocorréncia ou o Documento
de solicitagdo e a Especificagdo do cliente, se houver, a um Analista. Este, coletara
os requisitos que forem necessarios para completar a especificacio do cliente,
realizara uma analise de impacto da modificagdo solicitada, ira gerar um Cronograma
para a liberagdo da solicitagio - que podera coincidir ou nfio com a data pré-definida
para a nova versio. Também, solicitard o documento de Planejamento de Testes a
Equipe de Processos, pois, assim como a metodologia XP recomenda, um bom
procedimento preparatorio para a atividade de testes € escrever o que deve ser
testado, e atualizard a documenta¢io do sistema ou gerard novos documentos que
compdem o Modelo Essencial, caso exista necessidade, notificando o Grupo de

Qualidade de Software para realizar a devida inspecéo.

52

Para o Desenvolvedor, o Analista especificard como a manutengio devera ser
implementada no sistema utilizando a Especificagdo do cliente, quando houver, mais

sua analise, gerando o documento Maquete.

Os documentos Especificagio do cliente, Maquete ¢ o Modelo Essencial séo
artefatos que contribuem com a é4rea chave Gestdio de Requisitos, do Nivel 2 do
CMM, a qual especifica que os requisitos devem ser documentados e revisados. O
documento Cronograma atende a &rea chave Planejamento de Projeto de Software,
também do Nivel 2 do CMM, onde consta um planejamento para a realizagdo do

trabalho.
Entrada(s):

e Documento de solicitagio — Aberto pela Equipe de Processos. O status deste

documento ainda € “pendente”.

e Especificagio do cliente — Quando for uma manutengdo evolutiva, a Equipe de
Processos encaminhara a especificagiio referente ao Documento de solicitagio

aberto.

Saida(s):

Cronograma — Consta o periodo de desenvolvimento, de testes e de tmplantacio,

o qual sera encaminhado para o cliente;

Maquete — Este documento é elaborado pelo Analista e encaminhado ao

Desenvolvedor para efetuar a manutengdo;

Documento de solicitagiio — O stafus deste documento ¢ alterado para “em

Desenvolvimento™,

Planejamento de Testes;

Modelo Essencial (atualizado).

53

4.3.3 Fase de Implementacio

Nessa fase, os Desenvolvedores, ja com as devidas especificagbes em maos, realizam
as alteragBes no codigo e executam os testes unitdrios dos médulos afetados,
seguindo o especificado no documento Planejamento de Testes. Em paralelo, os
Desenvolvedores montam o documento Controle de Logicas por Swap, onde constam
os nomes das logicas, telas, arquivos e depositos de dados que sofreram alteragdes. O
processo de implementagdo da manutengio ¢ acompanhado pelos Coordenadores
com o objetivo de prover visibilidade adequada do progresso real, permitindo que
sejam executadas agdes efetivas quando o desempenho da manutengdo desvia

significativamente dos planos de software.
Entrada(s):

¢ Documento de solicitagiio — o status do sistema é “em Desenvolvimento”,
¢ Maquete;
¢ Cronograma,

e Plangjamento de Testes — Roteiro de testes a ser seguido apos terminar a

produgiio de um artefato, para verificar se este foi corretamente produzido.
Saida(s):

¢ Documento de solicitagio — o status deste sistema é alterado para “em teste”;

e Controle de Logicas por Swap.

4.3.4 Fase de Testes

Na fase de testes, sio realizados os testes de aceitacio relativos aos itens alterados,
coordenados pela Equipe de Processos do cliente. Estes, seguem também seu

Planejamento de Testes validando a manutencdo solicitada.

O Planejamento de Testes depois de efetuados os testes, deve ser encaminhado ao
Grupo de Qualidade de Software para o processo de revisio, no qual os resultados

obtidos serio comparados com os previstos na Especificagio do cliente. Esta

54

validagdio é uma das atividades da érea chave Garantia da Qualidade, do Nivel 2 do

CMM que revisa a disponibilizagio dos resultados ao cliente.
Entrada(s):

e Documento de solicitagiio — o status deste sistema € “em Teste”,

o Planejamento de Testes.
Saida(s):

o Documento de solicitagiio — o status deste sistema ¢ alterado para “Testes OK”.

4.3.5 Fase de Implantacio

Nessa fase completa-se o processo de manutengdo. Os Desenvolvedores seguem o
que foi especificado no documento de Controle de Logicas por Swap para finalizar a
manutengio atualizando o ambiente de produgio. Este documento € entregue para o
Coordenador da equipe. O Coordenador compara o documento Controle de
demandas por Swap, onde constam as solicitagdes e ocorréncias que serdo liberadas,
com o documento Controle de Logicas por Swap, o qual possui também as
solicitacBes e ocorréncias com seus respectivos nomes de logicas, nomes de telas,

arquivos e depdésitos de dados alterados.
Entrada(s):

e Documento de solicitagiio — o status deste sistema & “Testes OK”,
e Controle de demandas por Swap;

¢ Controle de Logicas por Swap.
Saida(s):
o Documento de solicitagio — o status deste sistema é alterado para “Finalizado”.

Todo o processo em que uma manutengdo é submetida, estd sendo acompanhada

através da evolugio do status dos documentos contudo, o Documento de solicitagdo e

55

o Documento de ocorréncia contribuem com a area Acompanhamento e Supervisdo

do Projeto de Software, do Nivel 2 do CMM.

As revisdes e auditorias realizadas pelos Coordenadores e pela Equipe de Garantia
da Qualidade sdo atividades previstas na Garantia da Qualidade de Software com o
objetivo de subsidiar 2 manutengio do sistema e os Desenvolvedores envolvidos

garantindo a satisfagfio do cliente.

Para facilitar o trabalho entre os Desenvolvedores compartilhando a propriedade do
todo o codigo, sugere-se que a Equipe de Qualidade de Software gere um documento
padronizado para codificagiio, com regras que assegurem a clareza do codigo, para
que 0s programas Sejam escritos da mesma forma e compreensiveis a todos. O

Codigo padrio e a Propriedade coletiva sdo requisitos do XP,

4.4, Conclusoes

Neste capitulo procurou-se estabelecer de forma rigorosa a definigio do processo de
manutengdo na empresa, visando atingir areas chave do modelo CMM. Entretanto, ¢
necessario considerar que este modelo envolve atividades de natureza gerencial e que
somente a melhoria dos processos técnicos de desenvolvimento e manutengio nao
seria suficiente para propiciar a elevago de nivel da empresa. Esforgos deveriam ser
realizados no sentido de permitir o planejamento e gerenciamento dos projetos com
base na experiéncia adquirida em projetos anteriores. Isto equivale a dizer que a
empresa deve, antes de tudo, preparar-se para organizar uma base de dados de
historicos de projetos, fundamental ao planejamento correto de cada projeto que se
inicia. Outros fatores, como a analise de riscos, controle de versdes e implantagio de
métricas também s3o importantes e deveriam ser comsiderados, caso o objetivo

primeiro deste trabalho tivesse sido a elevagdo de maturidade.

O objetivo principal, entretanto, foi realizar o planejamento das atividades visando a
obtencdo de documentacio do sistema, cuja falta torna-se cada vez mais crucial ao
processo de manutengdo. Os modelos sugeridos — Andlise Essencial — tiveram a
escolha fortemente influenciada pela ferramenta utilizada no desenvolvimenio, que

nio pode ser desprezada em detrimento de outras metodologias. Por outro lado, a

56

adogio desta metodologia pode ser apoiada por inumeras ferramentas CASE
disponibilizadas gratuitamente na Internet, cuja aquisi¢io ndo traria nenhum Onus

adicional & empresa.

57

Capitulo 5 - CONCLUSOES

5.1 Consideragdes Finais

Embora sabendo que ndo existam solugBes féceis e instantdneas para os problemas

de manutengio de software, deve-se considerar que:

e Para aplicar uma metodologia em um sistema ja implantado, deve-se levar em

conta as ferramentas utilizadas para se aplicar uma metodologia compativel;

e Antes de comecar a melhorar o processo de manutencdo de software, deve-se
definir o processo - gerenciamento de processos -, para que se possam identificar
as causas basicas da baixa qualidade de versdes e projetos de software e
identificar a porgio do software que causa mais desperdicio, retrabalho e,

portanto, aumento de custos & medida que o software evolui;

» A aplicaciio de todos os métodos, ferramentas ou procedimentos ligados 4 area de
manutencio de sofiware podem se tornar efetivos, se aplicados a um processo

bem controlado, disciplinado e “limpo”;

e Os programas de produtividade e qualidade de software devem estar voltados as
questdes técnicas do ciclo de desenvolvimento e manutengio dos sistemas, e

principalmente, aos aspectos administrativos e humanos do trabalho;

e A maioria dos problemas associados 4 manutengdo de software pode estar ligada
a deficiéncias na fase de planejamento e desenvolvimento do software. A falta de
controle e disciplina, e a despreocupagiio com a manutenibilidade futura dos
sistemas nas atividades de desenvolvimento quase sempre acarretam problemas

durante a manutencdo do software.

5.2 Conclusio Final

Foi proposta nesta monografia uma abordagem para a melhoria de um processo de
manutencio, com o uso de engenharia reversa, para a criagio de Modelagem

Essencial do sistema ja implantado e que nfio possui especificagdo, do uso de alguns

58

requisitos da disciplina Extremme Programming e de referéncias aos artefatos

exigidos pelas areas chaves do Nivel 2 do Modelo CMM.

A contribuicio deste trabalho se dé pela aplicagio de uma metodologia que define
um processo de manutengio organizado por fases a empresa da autora, o qual
auxiliara no procedimento adequado para o atendimento de uma solicitagdo de
manutencgdo do cliente. A metodologia também beneficia nos padroes da
documentacio pré-definida que deve ser gerada ou atualizada, facilitando na
compreensdo do sistema em futuras analises. As técnicas de engenharia reversa tém

como objetivo melhorar a confiabilidade e manutenibilidade do sistema.

As referéncias feitas ao modelo CMM sfo um incentivo para a adogio de um modelo
de qualidade que prové o gerenciamento - com a adequada visibilidade - do processo,
que esta sendo utilizado pelo projeto continuado, e dos produtos, que estéo sendo

construidos.

A revisio e a auditoria de produtos de software e atividades para verificar se os
mesmos estio cumprindo os procedimentos ¢ padrdes adotados na empresa
contribuem com ¢ subsidio da manutengfio do sistema para alcangar os resultados
esperados com maior qualidade do produto e, conseqientemente, contribuindo para a

satisfagdo do cliente.

59

REFERENCIAS

TEEE Standards Board. Glessary of software engineering terminology . New York:
IEEE, 1983. (ANSVIEEE Std.).

IEEE Standards Board. Standard for software user documentation. New York:
IEEE,1987. (IEEE Std. 1063-1987)

BrECK, K. Extreme programming explained: embrace change. Reading: Addison
Wesley, 2000.

CORREIA, M. G. Gestiio de processo de desenvolvimento de projetos de software
em um ciclo de vida acelerado. 2003. Dissertagio (Mestrado) — Escola Politécnica,

Universidade de S#o Paulo. Sdo Paulo, 2003.

DONOVAN, W. Extreme programming: a gentle introduction. Disponivel em:

<http://www.extremeprogramming.org >. Acesso em: 12 dez. 2003,

FOUNER, R. Guia pritico para desenvolvimento e manutencio de sistemas
estruturados. 2.ed. Trad. De Flavio Deny Steffen. S3o Paulo: Makron Books,
1994,

FOWLER, M., MATTHEW, F. Continuous integration. Disponivel em:

<http://www.martinfowler.com/articles/continuousIntegration.html#N222>. Acesso
em; 12 dez. 2003.

GANE, T.; SARSON, C. Analise estruturada de sistemas. Rio de Janeiro: LTC, 1983.

JEFFRIES, R. Xprogramming.com: an exireme programming resource. Disponivel

em: <http://www xprogramming.com/ >. Acesso em: 12 dez. 2003,

LIENTZ, B. P. ; SWASON, E.B. Problems in application software maintenance.
Communications of the ACM, v.24, n. 11, p. 763-769. Nov. 1981.

MCMENAMIN, S. M.; PALMER, J. F. Andlise essencial de sistemas. Sdo Paulo:
Makron Books, 1984,

60

SOMMERVILLE, I. Engenharia de software. 6.ed. S3o Paulo: Addison Wesley, 2003,
PAULA FILHO, W. DEP. Engenharia de software. Rio de Janeiro: LYC, 2001.

PRESSMAN, R. S. Software engineering: a practitioner’s approach. 5.ed. Rio de
Janeiro: McGraw-Hill, 2003.

RATIONAL SOFTWARE CORPORATION. Rational Unified Process — best practices for
software development teams. Disponivel em: < http://www.rational.com >. Acesso
em: 12 dez. 2003.

RATIONAL SOFTWARE CORPORATION. Reaching levels CMM levels 2 and 3 with
the Rational Unified Precess.(White Paper). 2000. Disponivel em:

<http://www.rational.com> Acesso em: 16 Jan. 2003.

YOURDON E. Analise estruturada moderna. Rio de Janeiro: Campus, 1990.

